ANSIBLE
CHEAT SHEET

* It is an open source engine that automates
deployment, orchestration, cloud provisioning and
other tools.

* It uses a playbook to describe jobs and uses
YAML which is human readable

* It is designed for multi- tier deployment. It is
agentless and works by connecting nodes
through ssh.

* Common strategies to debug playbooks are

* Debug and register

* Use verbosity (verbosity level)

* Playbook issues:

* Quoting

* Indentation

* Some drawbacks are:

* OS restrictions: is OS dependent so code on one
OS will not work for another

* Once playbook is running, adding of hosts is not
possible

* Error reporting is mediocre.

Troubleshooting

* sex: male
* likes:
- english

* Boolean terms are also used in YAML

How Does it Work?

* Connects nodes and pushes small programs called
modules to them and are removed when they are
done.

* The management node controls whole execution of
the playbook.

* The inventory file provides the list of hosts where
the modules need to be run.

* The management node does an "ssh’ connection
and executes the modules and installs the software.

Types of machines:

* Control machine : manages other machines

* Remote machine: controlled by other machines
Multiple remote systems can be handled by

one machine,

* Remote machine managing is done by ansible
by default.

* Ansible doesn't leave any software running on
them. Therefore

there is no need of an upgrade when moving to a
newer version.

* Install it through apt, yumpkg, pip, OpenCSW

« installing it thruugﬂ apt :

$ sudo apt-get update

% sudo apt-get install software-properties-common
$ sudo apt-add-repository ppa: ansible/ansible $
sudo apt-get update

$ sudo apt-get install ansible

* Run ansible version to make sure it was installed

properly.

Environment Setup

Advantages of Ansible

* It is free and open source.

* Agentless.

* System requirements.
* Developed in python.
* Lightweigh
* Ansible uses YAML syntax in config files.
* Large community base,

No master client model.

t and quick deployment.

Ad - hoc Commands

* General syntax of ad-hoc command:
Command hostngroup module/options[arguments]

FUNCTION

COMMANDS

» Service/server- a process that provides service

« Machine - physical machine, Vm or a container
= Target machine - end machine to be configured
by ansible

» Task- an action

* Playbook - location where YAMI files are written
and executed

Check connectivity of hosts

#ansible <group> -m ping

Rebooting hosts

#ansible <group> -a “/bin/reboot”

Check host system’s info

#ansible<group> -m steup | less

Transfering files

#ansible <group> -m copy -a
"src=home/ansible dest=/tmo/homef]

Create new user

#ansible<group> -m user -a "name=
ansible password= <encrypted
password>"

Deleting user

#ansible<group> -m user -a "name=
ansible state- absent”

Inventary

Flaybook | |

[Eroup A]
Host 1
[eroup B]
Haost 2
Host N

* YAML syntax is used to express ansible playbooks
» Key-value palr:
Dictionary is represented in key value pair
Ex: james:
name: james john
roliNo: 34
div: B
sex. male
» Representing lsts:;
» Each element has to be written in a
new line with “-" as the prefix
» countries:
- America
- Iceland
« Lists inside the dictionary:
» name: james john
» rolINo: 34
» div. B

Check if package is installed

and update it

#ansible<group> -m yum -a “name=
httpd state=|atest”

Playbooks

* It is the place where all YAML files are stored and
executed. Acts like a to-do list

* YAML- yet another markup language

* A playbook can have more than one plays.
Plays map the instructions defined against a
particular host

» Typically written in a text editor like notepad or
notepad++

Sample playbook/YAML file;

name: install and configure DB

hosts: testServer

become: yes

vars: oracle_db_port_value : 1521

tasks:

-name: Install the Oracle DB

yum: <code to install the DB>

-name: Ensure the installed service is enabled
service:

name: <your service name>

» Tags of YAML:

* Name: name of the playbook

» Hosts: specifies the list of hosts. Tasks can be
on the same machine or a different one.

» Vars: defines the variables which you can use
 Tasks: it is the list of action that needs to be
performed. A task is always linked to a module,

= Exception handling:

* Similar to any other programming language

« Keywords : rescue and always

* The code is written in block

» It goes to the rescue phase and gets executed
if the command in the block fails.

*» Thereby block is the same as "try block “,
catch block is like “ rescue” and always
performs the same function as we know.

Check if package is installed
and dont update it

#ansible<group> -m yum -a "name=
httpd state=present”

Check if package is s

specific version

#ansible<group> -m yum -a "name=
httpd1.8 state=latest”

Check if package is not

installed

#ansible <group> -m yum -&
“name= httpd state= absent

Starting a service

#ansible<group> -m service -a
“name= httpd state="started"”

Stopping a service

#ansible<group> -m service -a
“name= httpd state="stopped"

Restarting a service

#ansible<group> -m service -a
“name=httpd state="restarted”

Variables

* Same as using variables in programming languages
Ex: - hosts : <your hosts>

* tomcat_port : 8080

* Here tomcat_port is assigned to 8080

* Keywords used:

* Block- ansible syntax to execute a block

* Name- name of the block

» Action- the code that is to be executed

« Reglster- registers the output

« Always- states that below word will be run
» Msg2- displays the message

IntelliPaat

