1 view

I work on a very little research team to create/adapt a Genetic Algorithm library in Scala for distributed computation with Scientific Workflow System, in our case we use the open-source OpenMole software (http://www.openmole.org/).

Recently, I try to understand and re-implement the SBX crossover operator written in JMetal Metaheuristics library (http://jmetal.sourceforge.net/) to adapt it in the functional version in our Scala library.

I write some code, but I need our advice or your validation about the SBX defined into java library because the source code doesn't appear equal to the original equation written here: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.7291&rep=rep1&type=pdf at page 30, in annex A

The first question, I don't understand the java version of JMetal, why they use two different beta values ?!

• beta1 which use in the equation the first arg of min[(y1 - yL), ...] and
• beta2 which use the second arg of min [..., (yu - y2)])

Beta 1 and 2 are used for computation of alpha value and two (so here and in jmetal we have also two alpha different value alpha1 and 2) ...

Same problem/question, we have in jmetal two computation for beta (java code) or in Deb equation, the result of :

Second question, what is the meaning of the symbol  used in (2) and (3) procedure in pseudo-algorithm of SBX, and the difference with the simple beta ? Especially when we want to compute children/offsprings of crossover parents, like here :

## Edit

• Correct a no-op if/else block

• Author of code in jmetal give me the link of source code of Nsga-II algorithm, and he explains to me that description of SBX by Deb differs from his implementation :/

http://www.iitk.ac.in/kangal/codes.shtml

I don't understand the difference between the description and the implementation in jmetal and original source code, do you have an explanation?

• Correct if/else return for the map

## Start of translation into scala

class SBXBoundedCrossover[G <: GAGenome, F <: GAGenomeFactory[G]](rate: Random => Double = _.nextDouble) extends CrossOver [G, F] {
def this(rate: Double) = this( _ => rate)
def crossOver (genomes : IndexedSeq [G], factory: F) (implicit aprng : Random) = {
val g1 = genomes.random
val g2 = genomes.random
val crossoverRate = rate(aprng)
val EPS =  1.0e-14
val numberOfVariables = g1.wrappedValues.size
val distributionIndex = 2
val variableToMutate = (0 until g1.wrappedValues.size).map{x => !(aprng.nextDouble < 0.5)}
//crossover probability
val offspring = {
if (aprng.nextDouble < crossoverRate) {
(variableToMutate zip (g1.wrappedValues zip g2.wrappedValues)) map {
case (b, (g1e, g2e)) =>
if(b) {
if (abs(g1e - g2e) > EPS){
val y1 = min(g1e, g2e)
val y2 = max(g2e, g1e)
var yL = 0.0 //g1e.getLowerBound
var yu = 1.0 //g1e.getUpperBound
var rand = aprng.nextDouble   // ui
var beta1 = 1.0 + (2.0 * (y1 - yL)/(y2 - y1))
var alpha1 = 2.0 - pow(beta1,-(distributionIndex+1.0))
var betaq1 = computebetaQ(alpha1,distributionIndex,rand)
//calcul offspring 1 en utilisant betaq1, correspond au β barre
var c1 = 0.5 * ((y1 + y2) - betaq1 * (y2 - y1))
// -----------------------------------------------
var beta2 = 1.0 + (2.0 * (yu - y2) / (y2 - y1))
var alpha2 = 2.0 - pow(beta2, -(distributionIndex + 1.0))
var betaq2 = computebetaQ(alpha2,distributionIndex,rand)
//calcul offspring2 en utilisant betaq2
var c2 = 0.5 * ((y1 + y2) + betaq2 * (y2 - y1))
if (c1 < yL) c1 = yL
if (c1 > yu) c1 = yu
if (c2 < yL) c2 = yL
if (c2 > yu) c2 = yu
if (aprng.nextDouble <= 0.5) {
(c2,c1)
} else {
(c1, c2)
}
}else{
(g1e, g2e)
}
}else{
(g2e, g1e)
}
}
}else{
// not so good here ...
(g1.wrappedValues zip g2.wrappedValues)
}
}
(factory.buildGenome(offspring.map{_._1}),  factory.buildGenome(offspring.map{_._2}))
}
def computebetaQ(alpha:Double,  distributionIndex:Double,  rand:Double):Double = {
if (rand <= (1.0/alpha)){
pow ((rand * alpha),(1.0 / (distributionIndex + 1.0)))
} else {
pow ((1.0 / (2.0 - rand * alpha)),(1.0 / (distributionIndex + 1.0)))
}
}

by (108k points)

They differ only in the calculation of beta. You can check out this link which helps you in solving your problem: https://gist.github.com/Tiagoperes/1779d5f1c89bae0cfdb87b1960bba36d