Big Data Hadoop & Spark Certification Training

In collaboration with IBM
Table of Contents

1. About the Program
2. Collaborating with IBM
3. About Intellipaat
4. Key Features
6. Career Support
7. Why take up this course?
8. Who should take up this course?
10. Program Curriculum
11. Self-paced Courses
12. Project Work
13. Certification
14. Intellipaat Success Stories
15. Contact Us
About the Program

Intellipaat Big Data Hadoop training program helps you master Big Data Hadoop and Spark to get ready for the Cloudera CCA Spark and Hadoop Developer Certification (CCA175) exam as well as master Hadoop Administration with 14 real-time industry-oriented case-study projects. In this Big Data course, you will master MapReduce, Hive, Pig, Sqoop, Oozie and Flume and work with Amazon EC2 for cluster setup, Spark framework and RDD, Scala and Spark SQL, Machine Learning using Spark, Spark Streaming, etc.
Collaborating with IBM

IBM is one of the leading innovators and the biggest player in creating innovative tools for big data analytical tools. Top subject matter experts from IBM will share knowledge in the domain of analytics and big data through this training program that will help you gain breadth of knowledge and Industry experience.

Benefits for students from IBM

- Industry-recognized IBM certificate
- Access to IBM Watson for hands-on training and practice
- Industry in-line case studies and project work

About Intellipaat

Intellipaat is one of the leading online e-learning training providers with more than 600,000 learners across 55+ countries. We are on a mission to democratize education as we believe that everyone has the right to quality education.

Our courses are delivered by subject matter experts from top MNCs, and our world-class pedagogy enables to quickly learn difficult topics in no time. Our 24/7 technical support and career services will help learners jump-start their careers in their dream companies.
Key Features

- **60 HRS INSTRUCTOR-LED TRAINING**
- **80 HRS SELF-PACED TRAINING**
- **120 HRS REAL-TIME PROJECT WORK**
- **LIFETIME ACCESS**
- **24/7 TECHNICAL SUPPORT**
- **INDUSTRY-RECOGNIZED CERTIFICATION**
- **JOB ASSISTANCE THROUGH 400+ CORPORATE TIE-UPS**
- **FLEXIBLE SCHEDULING**
Career Support

SESSIONS WITH INDUSTRY MENTORS
Attend sessions from top industry experts and get guidance on how to boost your career growth

MOCK INTERVIEWS
Mock interviews to make you prepare for cracking interviews by top employers

RESUME PREPARATION
Get assistance in creating a world-class resume from our career services team
Why take up this course?

- Global Hadoop market to reach $84.6 billion in two years – Allied Market Research
- The number of jobs for all the US Data Professionals will increase to 2.7 million per year – IBM
- A Hadoop Administrator in the US can get a salary of $123,000 – Indeed

Big Data is the fastest growing and the most promising technology for handling large volumes of data for doing data analytics. This Big Data Hadoop training will help you be up and running in the most demanding professional skills. Almost all top MNCs are trying to get into Big Data Hadoop; hence, there is a huge demand for certified Big Data professionals. Our Big Data online training will help you learn Big Data and upgrade your career in the Big Data domain.

Who should take up this course?

- Programming Developers and System Administrators
- Experienced working professionals and Project Managers
- Big Data Hadoop Developers eager to learn other verticals like testing, analytics and administration
- Mainframe Professionals, Architects and Testing Professionals
- Business Intelligence, Data Warehousing and Analytics Professionals
- Graduates and undergraduates eager to learn Big Data
Program Curriculum

BIG DATA HADOOP COURSE CONTENT

1. HADOOP INSTALLATION AND SETUP
 1.1 The architecture of Hadoop cluster
 1.2 What is High Availability and Federation?
 1.3 How to setup a production cluster?
 1.4 Various shell commands in Hadoop
 1.5 Understanding configuration files in Hadoop
 1.6 Installing a single node cluster with Cloudera Manager
 1.7 Understanding Spark, Scala, Sqoop, Pig, and Flume

2. Introduction to Big Data Hadoop and Understanding HDFS and MapReduce
 2.1 Introducing Big Data and Hadoop
 2.2 What is Big Data and where does Hadoop fit in?
 2.3 Two important Hadoop ecosystem components, namely, MapReduce and HDFS
 2.4 In-depth Hadoop Distributed File System – Replications, Block Size, Secondary Name node, High Availability and in-depth YARN – resource manager and node manager

 Hands-on Exercise: HDFS working mechanism, data replication process, how to determine the size of a block, and understanding a DataNode and a NameNode

3. DEEP DIVE IN MAPREDUCE
 3.1 Learning the working mechanism of MapReduce
 3.2 Understanding the mapping and reducing stages in MR
 3.3 Various terminologies in MR like Input Format, Output Format, Partitioners, Combiners, Shuffle, and Sort

 Hands-on Exercise: How to write a WordCount program in MapReduce?, How to write a Custom Partitioner?, What is a MapReduce Combiner?, How to run a job in a local job
runner, Deploying a unit test, What is a map side join and reduce side join?, What is a tool runner?, How to use counters, dataset joining with map side, and reduce side joins?

4. INTRODUCTION TO HIVE

4.1 Introducing Hadoop Hive
4.2 Detailed architecture of Hive
4.3 Comparing Hive with Pig and RDBMS
4.4 Working with Hive Query Language
4.5 Creation of a database, table, group by and other clauses
4.6 Various types of Hive tables, HCatalog
4.7 Storing the Hive Results, Hive partitioning, and Buckets

Hands-on Exercise: Database creation in Hive, dropping a database, Hive table creation, how to change a database, data loading, dropping and altering a table, pulling data by writing Hive queries with filter conditions, table partitioning in Hive, and using the Group by clause

5. ADVANCED HIVE AND IMPALA

5.1 Indexing in Hive
5.2 The ap Side Join in Hive
5.3 Working with complex data types
5.4 The Hive user-defined functions
5.5 Introduction to Impala
5.6 Comparing Hive with Impala
5.7 The detailed architecture of Impala

Hands-on Exercise: How to work with Hive queries, the process of joining a table and writing indexes, external table and sequence table deployment, and data storage in a different table
6. INTRODUCTION TO PIG
 6.1 Apache Pig introduction and its various features
 6.2 Various data types and schema in Hive
 6.3 The available functions in Pig, Hive Bags, Tuples, and Fields

 Hands-on Exercise: Working with Pig in MapReduce and in a local mode, loading of data, limiting data to four rows, storing the data into files, and working with Group By, Filter By, Distinct, Cross, and Split

7. FLUME, SQOOP, AND HBASE
 7.1 Apache Sqoop introduction
 7.2 Importing and exporting data
 7.3 Performance improvement with Sqoop
 7.4 Sqoop limitations
 7.5 Introduction to Flume and understanding the architecture of Flume
 7.6 What is HBase and the CAP theorem?

 Hands-on Exercise: Working with Flume for generating a sequence number and consuming it, using Flume Agent to consume Twitter data, using AVRO to create a Hive table, AVRO with Pig, creating a table in HBase, and deploying Disable, Scan, and Enable table

8. WRITING SPARK APPLICATIONS USING SCALA
 8.1 Using Scala for writing Apache Spark applications
 8.2 Detailed study of Scala
 8.3 The need for Scala
 8.4 The concept of object-oriented programming
 8.5 Executing the Scala code
 8.6 Various classes in Scala like getters, setters, constructors, abstract, extending objects, overriding methods
 8.7 The Java and Scala interoperability
 8.8 The concept of functional programming and anonymous functions
 8.9 Bobsrockets package and comparing the mutable and immutable collections
 8.10 Scala REPL, Lazy Values, Control Structures in Scala, Directed Acyclic Graph
(DAG), first Spark application using SBT/Eclipse, Spark Web UI, Spark in Hadoop ecosystem.

Hands-on Exercise: Writing a Spark application using Scala and understanding the robustness of Scala for the Spark real-time analytics operation

9. **SPARK FRAMEWORK**
 9.1 Detailed Apache Spark and its various features
 9.2 Comparing with Hadoop
 9.3 Various Spark components
 9.4 Combining HDFS with Spark and Scalding
 9.5 Introduction to Scala
 9.6 Importance of Scala and RDD

 Hands-on Exercise: The Resilient Distributed Dataset (RDD) in Spark, How does it help to speed up Big Data processing?

10. **RDD IN SPARK**
 10.1 Understanding the Spark RDD operations
 10.2 Comparison of Spark with MapReduce
 10.3 What is a Spark transformation?
 10.4 Loading data in Spark
 10.5 Types of RDD operations viz. transformation and action
 10.6 What is a Key/Value pair?

 Hands-on Exercise: How to deploy RDD with HDFS?, Using the in-memory dataset, Using file for RDD, How to define the base RDD from an external file?, Deploying RDD via transformation, Using the Map and Reduce functions, Working on word count and count log severity

11. **DATAFRAMES AND SPARK SQL**
 11.1 The detailed Spark SQL
 11.2 The significance of SQL in Spark for working with structured data processing
 11.3 Spark SQL JSON support
 11.4 Working with XML data and parquet files
11.5 Creating Hive Context
11.6 Writing Data Frame to Hive
11.7 How to read a JDBC file?
11.8 Significance of a Spark data frame
11.9 How to create a data frame?
11.10 What is schema manual inferring?
11.11 Work with CSV files, JDBC table reading, data conversion from Data Frame to JDBC, Spark SQL user-defined functions, shared variable, and accumulators
11.12 How to query and transform data in Data Frames?
11.13 How data frame provides the benefits of both Spark RDD and Spark SQL?
11.14 Deploying Hive on Spark as the execution engine

Hands-on Exercise: Data querying and transformation using DataFrames and finding out the benefits of DataFrames over Spark SQL and Spark RDD

12. MACHINE LEARNING USING SPARK (MLLIB)

12.1 Introduction to Spark MLlib
12.2 Understanding various algorithms
12.3 What is Spark iterative algorithm?
12.4 Spark graph processing analysis
12.5 Introducing Machine Learning
12.6 K-Means clustering
12.7 Spark variables like shared and broadcast variables
12.8 What are accumulators?
12.9 Various ML algorithms supported by MLlib
12.10 Linear regression, logistic regression, decision tree, random forest, and K-means clustering techniques

Hands-on Exercise: Building a recommendation engine

13. INTEGRATING APACHE FLUME AND APACHE KAFKA

13.1 Why Kafka?
13.2 What is Kafka?
13.3 Kafka architecture
13.4 Kafka workflow
13.5 Configuring Kafka cluster
13.6 Basic operations
13.7 Kafka monitoring tools
13.8 Integrating Apache Flume and Apache Kafka

14. SPARK STREAMING

14.1 Introduction to Spark streaming
14.2 The architecture of Spark streaming
14.3 Working with the Spark streaming program
14.4 Processing data using Spark streaming
14.5 Requesting count and DStream
14.6 Multi-batch and sliding window operations
14.7 Working with advanced data sources
14.8 Features of Spark streaming
14.9 Spark Streaming workflow
14.10 Initializing StreamingContext
14.11 Discretized Streams (DStreams)
14.12 Input DStreams and Receivers
14.13 Transformations on DStreams
14.14 Output Operations on DStreams
14.15 Windowed operators and its uses
14.16 Important Windowed operators and Stateful operators

Hands-on Exercise: Twitter Sentiment Analysis, streaming using netcat server, Kafka–Spark Streaming and Spark–Flume Streaming

15. HADOOP ADMINISTRATION – MULTI - NODE CLUSTER SETUP USING AMAZON EC2
15.1 Create a 4-node Hadoop cluster setup
15.2 Running the MapReduce Jobs on the Hadoop cluster
15.3 Successfully running the MapReduce code
15.4 Working with the Cloudera Manager setup

Hands-on Exercise: *The method to build a multi-node Hadoop cluster using an Amazon EC2 instance, Working with the Cloudera Manager*

16. HADOOP ADMINISTRATION – CLUSTER CONFIGURATION

16.1 Overview of Hadoop configuration
16.2 The importance of Hadoop configuration file
16.3 The various parameters and values of configuration
16.4 The HDFS parameters and MapReduce parameters
16.5 Setting up the Hadoop environment
16.6 The Include and Exclude configuration files
16.7 The administration and maintenance of name node, data node directory structures, and files
16.8 What is a File system image?
16.9 Understanding Edit log

Hands-on Exercise: *The process of performance tuning in MapReduce*

17. HADOOP ADMINISTRATION: MAINTENANCE, MONITORING, AND TROUBLESHOOTING

17.1 Introduction to the checkpoint procedure, name node failure
17.2 How to ensure the recovery procedure, Safe Mode, Metadata and Data backup, various potential problems and solutions, what to look for and how to add and remove nodes

Hands-on Exercise: *How to go about ensuring the MapReduce File System Recovery for different scenarios, JMX monitoring of the Hadoop cluster, How to use the logs and stack traces for monitoring and troubleshooting, Using the Job Scheduler for scheduling jobs in the same cluster, Getting the MapReduce job submission flow, FIFO schedule, Getting to know the Fair Scheduler and its configuration*
18. ETL CONNECTIVITY WITH HADOOP ECOSYSTEM (SELF-PACED)

18.1 How ETL tools work in Big Data industry?
18.2 Introduction to ETL and data warehousing
18.3 Working with prominent use cases of Big Data in ETL industry
18.4 End-to-end ETL PoC showing Big Data integration with ETL tool

Hands-on Exercise: Connecting to HDFS from ETL tool, Moving data from Local system to HDFS, Moving data from DBMS to HDFS, Working with Hive with ETL Tool, Creating MapReduce job in ETL tool

19. PROJECT SOLUTION DISCUSSION AND CLOUDERA CERTIFICATION TIPS AND TRICKS

19.1 Working towards the solution of the Hadoop project solution
19.2 Its problem statements and the possible solution outcomes
19.3 Preparing for the Cloudera certifications
19.4 Points to focus on scoring the highest marks
19.5 Tips for cracking Hadoop interview questions

Hands-on Exercise: The project of a real-world high value Big Data Hadoop application, Getting the right solution based on the criteria set by the Intellipaat team
Following topics will be available only in self-paced mode:

20. HADOOP APPLICATION TESTING
 20.1 Importance of testing
 20.2 Unit testing, Integration testing, Performance testing, Diagnostics, Nightly QA
test, Benchmark and end-to-end tests, Functional testing, Release certification
testing, Security testing, Scalability testing, Commissioning and Decommissioning of
data nodes testing, Reliability testing, and Release testing

21. ROLES AND RESPONSIBILITIES OF HADOOP TESTING PROFESSIONALS
 21.1 Understanding the Requirement
 21.2 Preparation of the Testing Estimation
 21.3 Test Cases, Test Data, Test Bed Creation, Test Execution, Defect Reporting,
 Defect Retest, Daily Status report delivery, Test completion, ETL testing at every
 stage (HDFS, Hive and HBase) while loading the input (logs, files, records, etc.)
 using Sqoop/Flume which includes but not limited to data verification, Reconciliation,
 User Authorization and Authentication testing (Groups, Users, Privileges, etc.),
 reporting defects to the development team or manager and driving them to closure
 21.4 Consolidating all the defects and create defect reports
 21.5 Validating new feature and issues in Core Hadoop

22. Framework Called MRUnit for Testing of MapReduce Programs
 22.1 Report defects to the development team or manager and driving them to
closure
 22.2 Consolidate all the defects and create defect reports
 22.3 Responsible for creating a testing framework called MRUnit for testing of
 MapReduce programs

23. UNIT TESTING
 23.1 Automation testing using the OOZIE
 23.2 Data validation using the query surge tool

24. TEST EXECUTION
24.1 Test plan for HDFS upgrade
24.2 Test automation and result

25. Test Plan Strategy and Writing Test Cases for Testing Hadoop Application
25.1 Test, install and configure

Big Data Hadoop Course Projects

Working with MapReduce, Hive, and Sqoop

In this project, you will successfully import data using Sqoop into HDFS for data analysis. The transfer will be from Sqoop data transfer from RDBMS to Hadoop. You will code in Hive query language and carry out data querying and analysis. You will acquire an understanding of Hive and Sqoop after completion of this project.

Work on MovieLens Data For Finding the Top Movies

Create the top-ten-movies list using the MovieLens data. For this project, you will use the MapReduce program for working on the data file, Apache Pig for analyzing data, and Apache Hive data warehousing and querying. You will be working with distributed datasets.

Hadoop YARN Project: End-to-End PoC

Bring the daily incremental data into the Hadoop Distributed File System. As part of the project, you will be using Sqoop commands to bring the data into HDFS, working with the end-to-end flow of transaction data, and the data from HDFS. You will work on a live Hadoop YARN cluster. You will work on the YARN central resource manager.
Table Partitioning in Hive

In this project, you will learn how to improve the query speed using Hive data partitioning. You will get hands-on experience in partitioning of Hive tables manually, deploying single SQL execution in dynamic partitioning, and bucketing of data to break it into manageable chunks.

Connecting Pentaho with Hadoop Ecosystem

Deploy ETL for data analysis activities. In this project, you will challenge your working knowledge of ETL and Business Intelligence. You will configure Pentaho to work with Hadoop distribution as well as load, transform, and extract data into the Hadoop cluster.

Multi-node Cluster Setup

Set up a Hadoop real-time cluster on Amazon EC2. The project will involve installing and configuring Hadoop. You will need to run a Hadoop multi-node using a 4-node cluster on Amazon EC2 and deploy a MapReduce job on the Hadoop cluster. Java will need to be installed as a prerequisite for running Hadoop.

Hadoop Testing Using MRUnit

In this project, you will be required to test MapReduce applications. You will write JUnit tests using MRUnit for MapReduce applications. You will also be doing mock static methods using PowerMock and Mockito and implementing MapReduce Driver for testing the map and reduce pair.

Hadoop Web Log Analytics

Derive insights from web log data. The project involves the aggregation of log data, implementation of Apache Flume for data transportation, and processing of data and generating analytics. You will learn to use workflow and data cleansing using MapReduce, Pig, or Spark.

Hadoop Maintenance

Through this project, you will learn how to administer a Hadoop cluster for maintaining and managing it. You will be working with the name node directory structure, audit logging, data node block scanner, balancer, Failover, fencing, DISTCP, and Hadoop file formats.
Twitter Sentiment Analysis

Find out what is the reaction of the people to the demonetization move by India by analyzing their tweets. You will have to download the tweets, load them into Pig storage, divide the tweets into words to calculate sentiment, rate the words from +5 to −5 on the AFFIN dictionary, filter them and analyze sentiment.

Analyzing IPL T20 Cricket

This project will require you to analyze an entire cricket match and get any details of the match. You will need to load the IPL dataset into HDFS. You will then analyze that data using Apache Pig or Hive. Based on the user queries, the system will have to give the right output.

Movie Recommendation

Recommend the most appropriate movie to a user based on his taste. This is a hands-on Apache Spark project, which will include the creation of collaborative filtering, regression, clustering, and dimensionality reduction. You will need to make use of the Apache Spark MLlib component and statistical analysis.

Twitter API Integration for Tweet Analysis

Analyze the user sentiment based on a tweet. In this Twitter analysis project, you will integrate the Twitter API and use Python or PHP for developing the essential server-side codes. You will carry out filtering, parsing, and aggregation depending on the tweet analysis requirement.

Data Exploration Using Spark SQL – Wikipedia Data Set

In this project, you will be making use of the Spark SQL tool for analyzing Wikipedia data. You will be integrating Spark SQL for batch analysis, Machine Learning, visualizing, and processing of data and ETL processes, along with real-time analysis of data.
Certification

After the completion of the course, you will get a certificate from IBM.
Intellipaat Success Stories

Joel BASSA

I'm really thankful to Intellipaat about the Hadoop Architect Course with Big Data certification. First of all, the team supported me in finding the best Big Data online course based on my experiences and current assignment. Also, the session is so practical, and the trainers are seasoned and available for any queries even in offline mode after the sessions of Big Data Hadoop course. I'm really recommending this training to anyone who wants to understand the concept of Big Data by learning Hadoop and its ecosystem and obtain a most valuable certification in Hadoop from a recognized institution.

Paschal Ositadima

This is regards to conveying my deepest gratitude to Intellipaat. The quality and methodology of the online Hadoop training is matchless. The self-study program for which I had enrolled for big data Hadoop training ticked all the right boxes. I had access to free tutorials and videos to help me in my learning endeavour. A special mention must be made regarding the promptness and enthusiasm that Intellipaat showed when it comes to query resolution and doubt clearance. Kudos!

Rich Baker

This Intellipaat Hadoop tutorial has delivered more than what they had promised to me. Since I have undergone previous Hadoop training I am quite familiar with Big Data Hadoop concepts but Intellipaat took it to a different level with their attention to details and Hadoop domain expertise. I recommend this training
to everybody. You will learn everything from basic Hadoop concepts to advanced Hadoop technology deployment. I am more than satisfied with this training. Thank you Intellipaat!

Naman Patni

I had taken Intellipaat Big Data Hadoop Online. An excellent online mode of learning. Now I am confident I can look out for a career in Big Data. upon successfully completing this big data course Thanks again and looking forward to a lot more learning from Intellipaat !! I highly recommend the big data online course. All the best.

CONTACT US

INTELLIPAAAT SOFTWARE SOLUTIONS PVT. LTD.

Bangalore
AMR Tech Park 3, Ground Floor, Tower B, Hongasandra Village, Bommanahalli, Hosur Road, Bangalore – 560068

USA
1219 E. Hillsdale Blvd. Suite 205, Foster City, CA 94404

If you have any further queries or just want to have a conversation with us, then do call us.

IND: +91-7022374614 | US: 1-800-216-8930