Your cart is currently empty.
You will get to master the entire Data Science domain if you enroll in Master’s in Data Science in the Philippines. This MS in Data Science program has 24/7 online support to help you while you are learning SQL, Scikit-Learn, Spark, etc. to become a certified Data Scientist. You will also gain real-time experience through industry-grade projects.
Course 1
Python for Data Science
Course 2
Machine Learning
Course 3
AI & Deep Learning
Course 4
Big Data Hadoop & Spark
Course 5
Power BI
Course 6
Data Science With R
Course 7
Advanced Excel
Course 8
MongoDB
Course 9
MS-SQL
500% salary hike received by a working professional post completion of the course*
Fresher earned 30 LPA salary package on completion of the course*
53% of learners received 50% and above salary hike post completion of the program*
85% of the learners achieved their training objectives within 9 months of course completion*
95% learner satisfaction score post completion of the program*
Process Advisors
Read More
No. You do not need prior skills to enroll in this Data Science master’s course.
Talk To Us
We are happy to help you 24/7
Develop high-quality applications, apart from designing and implementing scalable code.
Investigate reported problems in the quality of data and come up with solutions to fix them.
Deploy models in SageMaker and use Lambda functions and API Gateway to integrate Machine Learning models in web applications.
Understand the data, data cleansing, data transformation, analyze outcomes, and present the result in the form of reports and dashboards.
Use advanced statistical techniques and tools to understand operating behavior and create algorithms with advanced prescriptive and descriptive methods.
Design and develop various Machine Learning models to help in deriving intelligence for the business products.
Data Science with R
Python for Data Science
Machine Learning
Artificial Intelligence
Hadoop
Spark
Power BI
Data Blending
Advanced Excel
MongoDB
T-SQL
Database objects
MS-SQL
Module 01 – Introduction to Data Science using Python
Module 02 – Python basic constructs
Module 03 – Maths for DS-Statistics & Probability
Module 04 – OOPs in Python (Self paced)
Module 05 – NumPy for mathematical computing
Module 06 – SciPy for scientific computing (Self-paced)
Module 07 – Data manipulation
Module 08 – Data visualization with Matplotlib
Module 09 – Machine Learning using Python
Module 10 – Supervised learning
Module 11 – Unsupervised Learning
Module 12 – Python integration with Spark (Self paced)
Module 13 – Dimensionality Reduction (Self paced)
Module 14 – Time Series Forecasting (Self paced)
Module 01 – Introduction to Machine Learning
Module 02 – Supervised Learning and Linear Regression
Module 03 – Classification and Logistic Regression
Module 04 – Decision Tree and Random Forest
Module 05 – Naïve Bayes and Support Vector Machine (self-paced)
Module 06 – Unsupervised Learning
Module 07 – Natural Language Processing and Text Mining (self-paced)
Module 08 – Introduction to Deep Learning
Module 09 – Time Series Analysis (self-paced)
Module 01 – Introduction to Deep Learning and Neural Networks
Module 02 – Multi-layered Neural Networks
Module 03 – Artificial Neural Networks and Various Methods
Module 04 – Deep Learning Libraries
Module 05 – Keras API
Module 06 – TFLearn API for TensorFlow
Module 07 – Dnns (deep neural networks)
Module 08 – Cnns (convolutional neural networks)
Module 09 – Rnns (recurrent neural networks)
Module 10 – Gpu in deep learning
Module 11 – Autoencoders and restricted boltzmann machine (rbm)
Module 12 – Deep learning applications
Module 13 – Chatbots
Module 01 – Hadoop Installation and Setup
Module 02 – Introduction to Big Data Hadoop and Understanding HDFS and MapReduce
Module 03 – Deep Dive in MapReduce
Module 04 – Introduction to Hive
Module 05 – Advanced Hive and Impala
Module 06 – Introduction to Pig
Module 07 – Flume, Sqoop and HBase
Module 08 – Writing Spark Applications Using Scala
Module 09 – Use Case Bobsrockets Package
Module 10 – Introduction to Spark
Module 11 – Spark Basics
Module 12 – Working with RDDs in Spark
Module 13 – Aggregating Data with Pair RDDs
Module 14 – Writing and Deploying Spark Applications
Module 15 – Project Solution Discussion and Cloudera Certification Tips and Tricks
Module 16 – Parallel Processing
Module 17 – Spark RDD Persistence
Module 18 – Spark MLlib
Module 19 – Integrating Apache Flume and Apache Kafka
Module 20 – Spark Streaming
Module 21 – Improving Spark Performance
Module 22 – Spark SQL and Data Frames
Module 23 – Scheduling/Partitioning
Module 24 – Hadoop Administration – Multi-node Cluster Setup Using Amazon EC2
Module 25 – Hadoop Administration – Cluster Configuration
Module 26 – Hadoop Administration – Maintenance, Monitoring and Troubleshooting
Module 27 – ETL Connectivity with Hadoop Ecosystem (Self-Paced)
Module 28 – Hadoop Application Testing
Module 29 – Roles and Responsibilities of Hadoop Testing Professional
Module 30 – Framework Called MRUnit for Testing of MapReduce Programs
Module 31 – Unit Testing
Module 32 – Test Execution
Module 33 – Test Plan Strategy and Writing Test Cases for Testing Hadoop Application
Module 01 – Introduction to Power BI
Module 02 – Data Extraction
Module 03 – Data Transformation – Shaping & Combining Data
Module 04 – Data Modelling & DAX
Module 05 – Data Visualization with analytics
Module 06 – Power BI Service (Cloud), Q&A, and Data Insights
Module 07 – Power BI Settings, Administration & Direct Connectivity
Module 08 – Embedded Power BI with API & Power BI
Module 09 – Power BI Advance & Power BI Premium
Module 01 – Introduction to Data Science with R
Module 02 – Data Exploration
Module 03 – Data Manipulation
Module 04 – Data Visualization
Module 05 – Introduction to Statistics
Module 06 – Machine Learning
Module 07 – Logistic Regression
Module 08 – Decision Trees and Random Forest
Module 09 – Unsupervised Learning
Module 10 – Association Rule Mining and Recommendation Engines
Module 11 – Introduction to Artificial Intelligence
Module 12 – Time Series Analysis
Module 13 – Support Vector Machine (SVM)
Module 14 – Naïve Bayes
Module 15 – Text Mining
Module 01 – Entering Data
Module 02 – Referencing in Formulas
Module 03 – Name Range
Module 04 – Understanding Logical Functions
Module 05 – Getting started with Conditional Formatting
Module 06 – Advanced-level Validation
Module 07 – Important Formulas in Excel
Module 08 – Working with Dynamic table
Module 09 – Data Sorting
Module 10 – Data Filtering
Module 11 – Chart Creation
Module 12 – Various Techniques of Charting
Module 13 – Pivot Tables in Excel
Module 14 – Ensuring Data and File Security
Module 15 – Getting started with VBA Macros
Module 16 – Ranges and Worksheet in VBA
Module 17 – IF condition
Module 18 – Loops in VBA
Module 19 – Debugging in VBA
Module 20 – Dashboard Visualization
Module 21 – Principles of Charting
Module 22 – Getting started with Pivot Tables
Module 23 – Statistics with Excel
Module 01 – Introduction to NoSQL and MongoDB
Module 02 – MongoDB Installation
Module 03 – Importance of NoSQL
Module 04 – CRUD Operations
Module 05 – Data Modeling and Schema Design
Module 06 – Data Management and Administration
Module 07 – Data Indexing and Aggregation
Module 08 – MongoDB Security
Module 09 – Working with Unstructured Data
Module 01 – Introduction to SQL
Module 02 – Database Normalization and Entity Relationship Model
Module 03 – SQL Operators
Module 04 – Working with SQL: Join, Tables, and Variables
Module 05 – Deep Dive into SQL Functions
Module 06 – Working with Subqueries
Module 07 – SQL Views, Functions, and Stored Procedures
Module 08 – Deep Dive into User-defined Functions
Module 09 – SQL Optimization and Performance
Module 10 – Advanced Topics
Module 11 – Managing Database Concurrency
Module 12 – Programming Databases Using Transact-SQL
Module 13 – Microsoft Courses: Study Material
Free Career Counselling
We are happy to help you 24/7
The application is free and takes only 5 minutes to complete.
Projects will be a part of your Data Science Architect Master’s program to consolidate your learning. It will ensure that you have real-world experience in Data Science.
Practice 100+ Essential Tools
Designed by Industry Experts
Get Real-world Experience
55% Average Salary Hike
$1,20,000 Highest Salary
12000+ Career Transitions
300+ Hiring Partners
*Past record is no guarantee of future job prospects
This Data Scientist master’s program in Philippines is created and delivered in association with IBM to help you land top jobs in the world’s best organizations. The training includes real-world projects and case studies after the completion of which, you will receive industry-recognized certifications from IBM and Intellipaat.
This training program aims to prepare you for the following certification exams:
As per the study, Data Scientist is the best career in the 21st century
Harvard Business ReviewThe Big Data market size is predicted to go up to US$229.4 billion by 2025 worldwide
Markets and MarketsThe average salary of a Data Scientist is around US$120,160 per year
IndeedVia Intellipaat PeerChat, you can interact with your peers across all classes and batches and even our alumni. Collaborate on projects, share job referrals & interview experiences, compete with the best, make new friends – the possibilities are endless and our community has something for everyone!
Over 20+ live interactive sessions with an industry expert to gain knowledge and experience on how to build skills that are expected by hiring managers. These will be guided sessions and that will help you stay on track with your up skilling objective.
Get assistance in creating a world-class resume & Linkedin Profile from our career services team and learn how to grab the attention of the hiring manager at profile shortlisting stage
Students will go through a number of mock interviews conducted by technical experts who will then offer tips and constructive feedback for reference and improvement.
Attend one-on-one sessions with career mentors on how to develop the required skills and attitude to secure a dream job based on a learners’ educational background, past experience, and future career aspirations.
Assured Interviews upon submission of projects and assignments. Get interviewed by our 500+ hiring partners.
Exclusive access to our dedicated job portal and apply for jobs. More than 400 hiring partners’ including top start-ups and product companies hiring our learners. Mentored support on job search and relevant jobs for your career growth.
$702
500% salary hike received by a working professional post completion of the course*
Fresher earned 30 LPA salary package on completion of the course*
53% of learners received 50% and above salary hike post completion of the program*
85% of the learners achieved their training objectives within 9 months of course completion*
95% learner satisfaction score post completion of the program*
Process Advisors
Intellipaat’s Master’s in Data Science in the Philippines is curated to help learners become experts in the domain of Data Science. If you are interested in mastering Data Science end-to-end, then this master’s program is for you. The individual courses at Intellipaat, on the other hand, are focused on specializations.
We have learners from all over the Philippines. As long as you are connected to the internet, you can take up this Data Science online course from any region, be it Quezon City, Manila, Caloocan, Davao City, Cebu, Zamboanga City, Taguig, or Pasig.
At Intellipaat, you can enroll in either the instructor-led online training or self-paced training. Apart from this, Intellipaat also offers corporate training for organizations to upskill their workforce. All trainers at Intellipaat have 12+ years of relevant industry experience, and they have been actively working as consultants in the same domain, which has made them subject matter experts. Go through the sample videos to check the quality of our trainers.
Intellipaat is offering 24/7 query resolution, and you can raise a ticket with the dedicated support team at any time. You can avail of email support for all your queries. If your query does not get resolved through email, we can also arrange one-on-one sessions with our support team. However, 1:1 session support is provided for a period of 6 months from the start date of your course.
Intellipaat is offering you the most updated, relevant, and high-value real-world projects as part of the training program. This way, you can implement the learning that you have acquired in real-world industry setup. All training comes with multiple projects that thoroughly test your skills, learning, and practical knowledge, making you completely industry-ready.
You will work on highly exciting projects in the domains of high technology, ecommerce, marketing, sales, networking, banking, insurance, etc. After completing the projects successfully, your skills will be equal to 6 months of rigorous industry experience.
Intellipaat actively provides placement assistance to all learners who have successfully completed the training. For this, we are exclusively tied-up with over 80 top MNCs from around the world. This way, you can be placed in outstanding organizations such as Sony, Ericsson, TCS, Mu Sigma, Standard Chartered, Cognizant, and Cisco, among other equally great enterprises. We also help you with the job interview and résumé preparation as well.
You can definitely make the switch from self-paced training to online instructor-led training by simply paying the extra amount. You can join the very next batch, which will be duly notified to you.
Once you complete Intellipaat’s training program, working on real-world projects, quizzes, and assignments and scoring at least 60 percent marks in the qualifying exam, you will be awarded Intellipaat’s course completion certificate. This certificate is very well recognized in Intellipaat-affiliated organizations, including over 80 top MNCs from around the world and some of the Fortune 500companies.
Apparently, no. Our job assistance program is aimed at helping you land in your dream job. It offers a potential opportunity for you to explore various competitive openings in the corporate world and find a well-paid job, matching your profile. The final decision on hiring will always be based on your performance in the interview and the requirements of the recruiter.