
DOCKER

CHEAT SHEET

Furthermore:
Docker Training Course

Docker tool was introduced in order to make it easier for you to create,
deploy, and run applications using containers. Containers provide you the
packaging of your application with all the important components it
requires, like libraries and other dependencies, and ship them all out as one
package. Due to this, you as a developer can be assured that your
application will run on any other machine.

D o c k e r

● Registry - hosts the public and official images
● Images - can be downloaded from the registry directly or implicitly when
starting a container
● Containers - instances of images. Multiple containers for a single image is
possible.
● Docker daemon - creating, running and monitoring containers, building
and storing images
● Client - talks to daemon via http

D o c k e r A r c h i t e c t u r e

Commands :
■ To initialize swarm mode and listen to a specific interface:

Docker swarm init --advertise-addr 10.1.0.2
■ Join an existing swarm as manager node:

Docker swarm join --token<manager-token> 10.1.0.2:2377
■ Join a swarm as a worker node:

Docker swarm join --token<worker-token> 10.1.0.2:2377
■ List all the nodes in the swarm:

Docker node ls
■ Create a service from an image and deploy 3 instances:

Docker service create --replicas 3 -p 80:80 name -webngix
■ List services running in the swarm:

Docker service ls
■ Scale a service:

Docker service scale web=5
■ List tasks of a service:

Docker service ps web

O r c h e s t r a t e

■ To build the image from the docker file and tag it:
Docker build -t myapp :1.0

■ List all images that are locally stored:
Docker images

■ Delete an image from the docker store:
Docker rmi alpine: 3.4

B u i l d

■ To create and run a command:
Docker run --name container_name docker_image

■ Flags used:
-d detach container on start
-rm remove container once it stops
-p publish host ip and host port to the container por
-v define and share volume across containers
--read-only sets it to read only permission

R u n

■ To clean up unused/dangling images:
Docker image prune

■ To remove images not used in containers:
Docker image prune -a

■ To prune the entire system:
Docker system prune

■ To leave a swarm:
Docker swarm leave

■ To remove a swarm:
Docker stack rm stack_name

■ To kill all running containers:
Docker kill $ (docker ps -q)

■ To delete all stopped containers:
docker rm $(docker ps -a -q)

■ To delete all images:
docker rmi $(docker images -q)

C l e a n U p

S h i p

Run a command in the container:
Docker exe -ti container_name command.sh

Follow the container logs:
Docker logs -ft container name

Save a running container as an image:
Docker commit -m “commit message” -a “author” container_name

username/image_name: tag

I n t e r a c t i o n W i t h i n a C o n t a i n e r

List of all services running in a swarm:
Docker service ls

To see all running services:
Docker stack services stack_name

To see all service logs:
Docker service logs stack_name service_names

To scale service across qualified nodes:
Docker service scale stack_name_service_name= replicas

S e r v i c e s

I m p o r t a n t T e r m s
■ Log in to a registry:

Docker login
my.registry.com:8000
■ Push an image to a registry:

Docker push myrepo/
myalpine:3.4

■ To pull an image from the registry:
Docker pull alpine:3.4.

■ Retag a local image with a new image
name:

Docker tag alpine:3.4 myrepo/
myalpine:3.4

• Registry/hub - the central place where
images live

• Docker machine - a VM to run docker
containers

• Docker compose - a VM to run
multiple containers as a system

• Layer - read-only files to provision the
system

• Image – a read only layer that is the
base of the image

• Container - a runnable instance of the
image

https://intellipaat.com/
https://intellipaat.com/docker-training-course/

