No. If two RDDs have the same partitioner, there will be no shuffle caused by the join. You can see this in CoGroupedRDD.scala:
override def getDependencies: Seq[Dependency[_]] = {
rdds.map { rdd: RDD[_ <: Product2[K, _]] =>
if (rdd.partitioner == Some(part)) {
logDebug("Adding one-to-one dependency with " + rdd)
new OneToOneDependency(rdd)
} else {
logDebug("Adding shuffle dependency with " + rdd)
new ShuffleDependency[K, Any, CoGroupCombiner](rdd, part, serializer)
}
}
}
However, keep in mind that the lack of a shuffle does not mean that no data will have to be moved between nodes. It's possible for two RDDs to have the same partitioner (be co-partitioned) yet have the corresponding partitions located on different nodes (not be co-located).
This situation is still better than doing a shuffle, but it's something to keep in mind. Co-location can improve performance, but is hard to guarantee.