Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
0 votes
2 views
in Machine Learning by (19k points)

There are so many posts like this about how to extract sklearn decision tree rules but I could not find any about using pandas.

Take this data and model for example, as below

# Create Decision Tree classifer object

clf = DecisionTreeClassifier(criterion="entropy", max_depth=3)

# Train Decision Tree Classifer

clf = clf.fit(X_train,y_train)

The result:

enter image description here

Expected:

There're 8 rules about this example.

From left to right,notice that dataframe is df

r1 = (df['glucose']<=127.5) & (df['bmi']<=26.45) & (df['bmi']<=9.1)

r8 =  (df['glucose']>127.5) & (df['bmi']>28.15) & (df['glucose']>158.5)

I'm not a master of extracting sklearn decision tree rules. Getting the pandas boolean conditions will help me calculate samples and other metrics for each rule. So I want to extract each rule to a pandas boolean condition.

1 Answer

0 votes
by (33.1k points)

First of all, let's use the scikit documentation on decision tree structure to get information about the tree that was constructed :

n_nodes = clf.tree_.node_count

children_left = clf.tree_.children_left

children_right = clf.tree_.children_right

feature = clf.tree_.feature

threshold = clf.tree_.threshold

You can define two recursive functions. The first one will find the path from the tree's root to create a specific node. The second one will write the specific rules used to create a node using its creation path :

def find_path(node_numb, path, x):

        path.append(node_numb)

        if node_numb == x:

            return True

        left = False

        right = False

        if (children_left[node_numb] !=-1):

            left = find_path(children_left[node_numb], path, x)

        if (children_right[node_numb] !=-1):

            right = find_path(children_right[node_numb], path, x)

        if left or right :

            return True

        path.remove(node_numb)

        return False

def get_rule(path, column_names):

    mask = ''

    for index, node in enumerate(path):

        #We check if we are not in the leaf

        if index!=len(path)-1:

            # Do we go under or over the threshold ?

            if (children_left[node] == path[index+1]):

                mask += "(df['{}']<= {}) \t ".format(column_names[feature[node]], threshold[node])

            else:

                mask += "(df['{}']> {}) \t ".format(column_names[feature[node]], threshold[node])

    # We insert the & at the right places

    mask = mask.replace("\t", "&", mask.count("\t") - 1)

    mask = mask.replace("\t", "")

    return mask

Finally, we use those two functions to first store the path of the creation of each leaf. And then to store the rules used to create each leaf :

# Leaves

leave_id = clf.apply(X_test)

paths ={}

for leaf in np.unique(leave_id):

    path_leaf = []

    find_path(0, path_leaf, leaf)

    paths[leaf] = np.unique(np.sort(path_leaf))

rules = {}

for key in paths:

    rules[key] = get_rule(paths[key], pima.columns)

With the data you gave the output is :

rules =

{3: "(df['insulin']<= 127.5) & (df['bp']<= 26.450000762939453) & (df['bp']<= 9.100000381469727)  ",

 4: "(df['insulin']<= 127.5) & (df['bp']<= 26.450000762939453) & (df['bp']> 9.100000381469727)  ",

 6: "(df['insulin']<= 127.5) & (df['bp']> 26.450000762939453) & (df['skin']<= 27.5)  ",

 7: "(df['insulin']<= 127.5) & (df['bp']> 26.450000762939453) & (df['skin']> 27.5)  ",

 10: "(df['insulin']> 127.5) & (df['bp']<= 28.149999618530273) & (df['insulin']<= 145.5)  ",

 11: "(df['insulin']> 127.5) & (df['bp']<= 28.149999618530273) & (df['insulin']> 145.5)  ",

 13: "(df['insulin']> 127.5) & (df['bp']> 28.149999618530273) & (df['insulin']<= 158.5)  ",

 14: "(df['insulin']> 127.5) & (df['bp']> 28.149999618530273) & (df['insulin']> 158.5)  "}

Since the rules are strings, you can't directly call them using df[rules[3]], you have to use the eval function like so df[eval(rules[3])]. For more details, study the Python Scikit Learn.

31k questions

32.8k answers

501 comments

693 users

Browse Categories

...