import pandas as pd
import numpy as np
from sklearn import preprocessing
#%%
#Loading the Raw Data
raw_csv_data= pd.read_csv('Audiobooks-data_raw.csv')
print(display(raw_csv_data.head(20)))
#%%
df=raw_csv_data.copy()
print(display(df.head(20)))
#%%
print(df.info())
#%%
#Separate the Targets from the dataset
inputs_all= df.loc[:,'Book length (mins)_overall':'Last visited minus Purchase date']
targets_all= df['Targets']
print(display(inputs_all.head()))
print(display(targets_all.head()))
#%%
#Shuffling the Data to prep for balancing
shuffled_indices= np.arange(inputs_all.shape[0])
np.random.shuffle(shuffled_indices)
shuffled_inputs= inputs_all.iloc[shuffled_indices]
shuffled_targets= targets_all[shuffled_indices]
#%%
#Balance the Dataset
#There are significantly more 0's than 1's in our target.
#We want a good accurate model
print(inputs_all.shape)
print(targets_all.shape)
#%%
num_one_targets= int(np.sum(targets_all))
zero_targets_counter= 0
indices_to_remove= []
print(num_one_targets)
#%%
for i in range(targets_all.shape[0]):
if targets_all[i]==0:
zero_targets_counter +=1
if zero_targets_counter> num_one_targets:
indices_to_remove.append(i)
#%%
inputs_all_balanced= np.delete(inputs_all, indices_to_remove, axis=0)
targets_all_balanced= np.delete(targets_all, indices_to_remove, axis=0)
ValueError Traceback (most recent call last)
~\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in create_block_manager_from_blocks(blocks, axes)
1652
-> 1653 mgr = BlockManager(blocks, axes)
1654 mgr._consolidate_inplace()
~\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in __init__(self, blocks, axes, do_integrity_check)
113 if do_integrity_check:
--> 114 self._verify_integrity()
115
~\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in _verify_integrity(self)
310 if block._verify_integrity and block.shape[1:] != mgr_shape[1:]:
--> 311 construction_error(tot_items, block.shape[1:], self.axes)
312 if len(self.items) != tot_items:
~\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in construction_error(tot_items, block_shape, axes, e)
1690 raise ValueError("Shape of passed values is {0}, indices imply {1}".format(
-> 1691 passed, implied))
1692
ValueError: Shape of passed values is (4474, 10), indices imply (14084, 10)
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
in
----> 1 inputs_all_balanced= np.delete(inputs_all, indices_to_remove, axis=0)
2 targets_all_balanced= np.delete(targets_all, indices_to_remove, axis=0)
~\Anaconda3\lib\site-packages\numpy\lib\function_base.py in delete(arr, obj, axis)
4419
4420 if wrap:
-> 4421 return wrap(new)
4422 else:
4423 return new
~\Anaconda3\lib\site-packages\pandas\core\generic.py in __array_wrap__(self, result, context)
1907 def __array_wrap__(self, result, context=None):
1908 d = self._construct_axes_dict(self._AXIS_ORDERS, copy=False)
-> 1909 return self._constructor(result, **d).__finalize__(self)
1910
1911 # ideally we would define this to avoid the getattr checks, but
~\Anaconda3\lib\site-packages\pandas\core\frame.py in __init__(self, data, index, columns, dtype, copy)
422 else:
423 mgr = init_ndarray(data, index, columns, dtype=dtype,
--> 424 copy=copy)
425
426 # For data is list-like, or Iterable (will consume into list)
~\Anaconda3\lib\site-packages\pandas\core\internals\construction.py in init_ndarray(values, index, columns, dtype, copy)
165 values = maybe_infer_to_datetimelike(values)
166
--> 167 return create_block_manager_from_blocks([values], [columns, index])
168
169
~\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in create_block_manager_from_blocks(blocks, axes)
1658 blocks = [getattr(b, 'values', b) for b in blocks]
1659 tot_items = sum(b.shape[0] for b in blocks)
-> 1660 construction_error(tot_items, blocks[0].shape[1:], axes, e)
1661
1662
~\Anaconda3\lib\site-packages\pandas\core\internals\managers.py in construction_error(tot_items, block_shape, axes, e)
1689 raise ValueError("Empty data passed with indices specified.")
1690 raise ValueError("Shape of passed values is {0}, indices imply {1}".format(
-> 1691 passed, implied))
1692
1693
ValueError: Shape of passed values is (4474, 10), indices imply (14084, 10)