Explore Courses Blog Tutorials Interview Questions
+1 vote
in Machine Learning by (4.2k points)

What is an example of how to use a TensorFlow TFRecord with a Keras Model and while keeping the dataset in tensors w/ queue runners?

Below is a snippet that works but it needs the following improvements:

  • Use the Model API
  • specify an Input()
  • Load a dataset from a TFRecord
  • Run through a dataset in parallel (such as with a queuerunner)

Here is the snippet, there are several TODO lines indicating what is needed:

from keras.models import Model
import tensorflow as tf
from keras import backend as K
from keras.layers import Dense, Input
from keras.objectives import categorical_crossentropy
from tensorflow.examples.tutorials.mnist import input_data

sess = tf.Session()

# Can this be done more efficiently than placeholders w/ TFRecords?
img = tf.placeholder(tf.float32, shape=(None, 784))
labels = tf.placeholder(tf.float32, shape=(None, 10))

# TODO: Use Input() 
x = Dense(128, activation='relu')(img)
x = Dense(128, activation='relu')(x)
preds = Dense(10, activation='softmax')(x)
# TODO: Construct model = Model(input=inputs, output=preds)

loss = tf.reduce_mean(categorical_crossentropy(labels, preds))

# TODO: handle TFRecord data, is it the same?
mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True)

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss)

# TODO remove default, add queuerunner
with sess.as_default():
    for i in range(1000):
        batch = mnist_data.train.next_batch(50){img: batch[0],
                                  labels: batch[1]})
    print(loss.eval(feed_dict={img:    mnist_data.test.images, 
                               labels: mnist_data.test.labels}))

Why is this question relevant?

Here is some starter information for a semantic segmentation problem example:

1 Answer

+1 vote
by (6.8k points)

Updated code for Tensorflow+keras, see the following example:

Here is an example for Keras 2

'''MNIST dataset with TensorFlow TFRecords.

Gets to 99.25% test accuracy after 12 epochs

(there is still a lot of margin for parameter tuning).


import os

import copy

import time

import numpy as np

import tensorflow as tf

from tensorflow.python.ops import data_flow_ops

from keras import backend as K

from keras.models import Model

from keras.layers import Dense

from keras.layers import Dropout

from keras.layers import Flatten

from keras.layers import Input

from keras.layers import Conv2D

from keras.layers import MaxPooling2D

from keras.callbacks import EarlyStopping

from keras.callbacks import TensorBoard

from keras.objectives import categorical_crossentropy

from keras.utils import np_utils

from keras.utils.generic_utils import Progbar

from keras import callbacks as cbks

from keras import optimizers, objectives

from keras import metrics as metrics_module

from keras.datasets import mnist

if K.backend() != 'tensorflow':

    raise RuntimeError('This example can only run with the '

                       'TensorFlow backend for the time being, '

                       'because it requires TFRecords, which '

                       'are not supported on other platforms.')

def images_to_tfrecord(images, labels, filename):

    def _int64_feature(value):

        return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

    def _bytes_feature(value):

        return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

    """ Save data into TFRecord """

    if not os.path.isfile(filename):

        num_examples = images.shape[0]

        rows = images.shape[1]

        cols = images.shape[2]

        depth = images.shape[3]

        print('Writing', filename)

        writer = tf.python_io.TFRecordWriter(filename)

        for index in range(num_examples):

            image_raw = images[index].tostring()

            example = tf.train.Example(features=tf.train.Features(feature={

                'height': _int64_feature(rows),

                'width': _int64_feature(cols),

                'depth': _int64_feature(depth),

                'label': _int64_feature(int(labels[index])),

                'image_raw': _bytes_feature(image_raw)}))




        print('tfrecord %s already exists' % filename)

def read_and_decode_recordinput(tf_glob, one_hot=True, classes=None, is_train=None,

                                batch_shape=[1000, 28, 28, 1], parallelism=1):

    """ Return tensor to read from TFRecord """

    print 'Creating graph for loading %s TFRecords...' % tf_glob

    with tf.variable_scope("TFRecords"):

        record_input = data_flow_ops.RecordInput(

            tf_glob, batch_size=batch_shape[0], parallelism=parallelism)

        records_op = record_input.get_yield_op()

        records_op = tf.split(records_op, batch_shape[0], 0)

        records_op = [tf.reshape(record, []) for record in records_op]

        progbar = Progbar(len(records_op))

        images = []

        labels = []

        for i, serialized_example in enumerate(records_op):


            with tf.variable_scope("parse_images", reuse=True):

                features = tf.parse_single_example(



                        'label': tf.FixedLenFeature([], tf.int64),

                        'image_raw': tf.FixedLenFeature([], tf.string),


                img = tf.decode_raw(features['image_raw'], tf.uint8)

                img.set_shape(batch_shape[1] * batch_shape[2])

                img = tf.reshape(img, [1] + batch_shape[1:])

                img = tf.cast(img, tf.float32) * (1. / 255) - 0.5

                label = tf.cast(features['label'], tf.int32)

                if one_hot and classes:

                    label = tf.one_hot(label, classes)



        images = tf.parallel_stack(images, 0)

        labels = tf.parallel_stack(labels, 0)

        images = tf.cast(images, tf.float32)

        images = tf.reshape(images, shape=batch_shape)

        # StagingArea will store tensors

        # across multiple steps to

        # speed up execution

        images_shape = images.get_shape()

        labels_shape = labels.get_shape()

        copy_stage = data_flow_ops.StagingArea(

            [tf.float32, tf.float32],

            shapes=[images_shape, labels_shape])

        copy_stage_op = copy_stage.put(

            [images, labels])

        staged_images, staged_labels = copy_stage.get()

        return images, labels

def save_mnist_as_tfrecord():

    (X_train, y_train), (X_test, y_test) = mnist.load_data()

    X_train = X_train[..., np.newaxis]

    X_test = X_test[..., np.newaxis]

    images_to_tfrecord(images=X_train, labels=y_train, filename='train.mnist.tfrecord')

    images_to_tfrecord(images=X_test, labels=y_test, filename='test.mnist.tfrecord')

def cnn_layers(x_train_input):

    x = Conv2D(32, (3, 3), activation='relu', padding='valid')(x_train_input)

    x = Conv2D(64, (3, 3), activation='relu')(x)

    x = MaxPooling2D(pool_size=(2, 2))(x)

    x = Dropout(0.25)(x)

    x = Flatten()(x)

    x = Dense(128, activation='relu')(x)

    x = Dropout(0.5)(x)

    x_train_out = Dense(classes, activation='softmax', name='x_train_out')(x)

    return x_train_out

sess = tf.Session()



batch_size = 100

batch_shape = [batch_size, 28, 28, 1]

epochs = 3000

classes = 10

parallelism = 10

x_train_batch, y_train_batch = read_and_decode_recordinput(







x_test_batch, y_test_batch = read_and_decode_recordinput(







x_batch_shape = x_train_batch.get_shape().as_list()

y_batch_shape = y_train_batch.get_shape().as_list()

x_train_input = Input(tensor=x_train_batch, batch_shape=x_batch_shape)

x_train_out = cnn_layers(x_train_input)

y_train_in_out = Input(tensor=y_train_batch, batch_shape=y_batch_shape, name='y_labels')

cce = categorical_crossentropy(y_train_batch, x_train_out)

train_model = Model(inputs=[x_train_input], outputs=[x_train_out])






tensorboard = TensorBoard()

# tensorboard disabled due to Keras bug,

                epochs=epochs)  # callbacks=[tensorboard])



# Second Session, pure Keras

(X_train, y_train), (X_test, y_test) = mnist.load_data()

X_train = X_train[..., np.newaxis]

X_test = X_test[..., np.newaxis]

x_test_inp = Input(batch_shape=(None,) + (X_test.shape[1:]))

test_out = cnn_layers(x_test_inp)

test_model = Model(inputs=x_test_inp, outputs=test_out)


test_model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])


loss, acc = test_model.evaluate(X_test, np_utils.to_categorical(y_test), classes)

print('\nTest accuracy: {0}'.format(acc))

For more details on Keras, check the Machine Learning Course given by Intellipaat.

Browse Categories