Below is my pipeline and it seems that I can't pass the parameters to my models by using the ModelTransformer class, which I take it from the link (http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html)
The error message makes sense to me, but I don't know how to fix this. Any idea how to fix this? Thanks.
# define a pipeline
pipeline = Pipeline([
('vect', DictVectorizer(sparse=False)),
('scale', preprocessing.MinMaxScaler()),
('ess', FeatureUnion(n_jobs=-1,
transformer_list=[
('rfc', ModelTransformer(RandomForestClassifier(n_jobs=-1, random_state=1, n_estimators=100))),
('svc', ModelTransformer(SVC(random_state=1))),],
transformer_weights=None)),
('es', EnsembleClassifier1()),
])
# define the parameters for the pipeline
parameters = {
'ess__rfc__n_estimators': (100, 200),
}
# ModelTransformer class. It takes it from the link
(http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html)
class ModelTransformer(TransformerMixin):
def __init__(self, model):
self.model = model
def fit(self, *args, **kwargs):
self.model.fit(*args, **kwargs)
return self
def transform(self, X, **transform_params):
return DataFrame(self.model.predict(X))
grid_search = GridSearchCV(pipeline, parameters, n_jobs=-1, verbose=1, refit=True)
Error Message: ValueError: Invalid parameter n_estimators for estimator ModelTransformer.