I am trying to use: train = optimizer.minimize(loss) but the standard optimizers do not work with tf.float64. Therefore I want to truncate my loss from tf.float64 to only tf.float32.
Traceback (most recent call last):
File "q4.py", line 85, in <module>
train = optimizer.minimize(loss)
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 190, in minimize
colocate_gradients_with_ops=colocate_gradients_with_ops)
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 229, in compute_gradients
self._assert_valid_dtypes([loss])
File "/Library/Python/2.7/site-packages/tensorflow/python/training/optimizer.py", line 354, in _assert_valid_dtypes
dtype, t.name, [v for v in valid_dtypes]))
ValueError: Invalid type tf.float64 for Add_1:0, expected: [tf.float32].