Without using groupby how would I filter out data without NaN?
Let say I have a matrix where customers will fill in 'N/A', 'n/a' or any of its variations and others leave it blank:
import pandas as pd
import numpy as np
df = pd.DataFrame({'movie': ['thg', 'thg', 'mol', 'mol', 'lob', 'lob'],
'rating': [3., 4., 5., np.nan, np.nan, np.nan],
'name': ['John', np.nan, 'N/A', 'Graham', np.nan, np.nan]})
nbs = df['name'].str.extract('^(N/A|NA|na|n/a)')
nms=df[(df['name'] != nbs) ]
output:
>>> nms
movie name rating
0 thg John 3
1 thg NaN 4
3 mol Graham NaN
4 lob NaN NaN
5 lob NaN NaN
How would I filter out NaN values so I can get results to work with like this:
movie name rating0 thg John 3
3 mol Graham NaN
I am guessing I need something like ~np.isnan but the Tilda does not work with strings.