You can use drop_duplicates
pd.concat([df1,df2]).drop_duplicates(keep=False)
The above code is used only on the data frame which has no duplicates For example:
df1=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
df2=pd.DataFrame({'A':[1],'B':[2]})
Wrong Output :
pd.concat([df1, df2]).drop_duplicates(keep=False)
Out[655]:
A B
1 2 3
Correct Output
Out[656]:
A B
1 2 3
2 3 4
3 3 4
There are 2 methods to achieve it:
Method 1: using isin in the tuple
df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
Out[657]:
A B
1 2 3
2 3 4
3 3 4
Method 2: Then merge with indicator
df1.merge(df2,indicator = True, how='left').loc[lambda x : x['_merge']!='both']
Out[421]:
A B _merge
1 2 3 left_only
2 3 4 left_only
3 3 4 left_only
If you want to know more about the Data Science then do check out the following Data Science which will help you in understanding Data Science from scratch