Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
0 votes
2 views
in Big Data Hadoop & Spark by (11.4k points)

I am using Spark 1.5.

I have two dataframes of the form:

scala> libriFirstTable50Plus3DF
res1: org.apache.spark.sql.DataFrame = [basket_id: string, family_id: int]

scala> linkPersonItemLessThan500DF
res2: org.apache.spark.sql.DataFrame = [person_id: int, family_id: int]


libriFirstTable50Plus3DF has 766,151 records while linkPersonItemLessThan500DF has 26,694,353 records. Note that I am using repartition(number) on linkPersonItemLessThan500DF since I intend to join these two later on. I am following up the above code with:

val userTripletRankDF = linkPersonItemLessThan500DF
     .join(libriFirstTable50Plus3DF, Seq("family_id"))
     .take(20)
     .foreach(println(_))


for which I am getting this output:

INFO scheduler.TaskSetManager: Finished task 172.0 in stage 3.0 (TID 473) in 520 ms on mlhdd01.mondadori.it (199/200)
java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:        at scala.concurrent.Await$.result(package.scala:107)
at org.apache.spark.sql.execution.joins.BroadcastHashJoin.doExecute(BroadcastHashJoin.scala:110)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
at org.apache.spark.sql.execution.TungstenProject.doExecute(basicOperators.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
at org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:63)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
 at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
 at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:190)
 at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
 at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
 at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
 at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
 at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1904)
 at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1385)
 at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1315)
 at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1378)
 at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:178)
 at org.apache.spark.sql.DataFrame.show(DataFrame.scala:402)
 at org.apache.spark.sql.DataFrame.show(DataFrame.scala:363)
 at org.apache.spark.sql.DataFrame.show(DataFrame.scala:371)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:72)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:77)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:79)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:81)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:83)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:85)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:87)
 at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:89)
 at $iwC$$iwC$$iwC$$iwC.<init>(<console>:91)
 at $iwC$$iwC$$iwC.<init>(<console>:93)
 at $iwC$$iwC.<init>(<console>:95)
 at $iwC.<init>(<console>:97)
 at <init>(<console>:99)
 at .<init>(<console>:103)
 at .<clinit>(<console>)
 at .<init>(<console>:7)
 at .<clinit>(<console>)
 at $print(<console>)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:606)
 at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
 at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1340)
 at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
 at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
 at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
 at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
 at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
 at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
 at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
 at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
 at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
 at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
 at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
 at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
 at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
 at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
 at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
 at org.apache.spark.repl.Main$.main(Main.scala:31)
 at org.apache.spark.repl.Main.main(Main.scala)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:606)
 at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:672)
 at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
 at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
 at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
 at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)


and I don't understand what is the issue. Is it as simple as increasing the waiting time? Is the join too intensive? Do I need more memory? Is the shufffling intensive? Can anyone help?

1 Answer

0 votes
by (32.3k points)
edited by

This happens because Spark tries to do Broadcast Hash Join and one of the DataFrames is very large, so sending it consumes much time.

In order to overcome this exception you can:

  • Set higher spark.sql.broadcastTimeout to increase timeout - spark.conf.set("spark.sql.broadcastTimeout", newValueForExample36000)
  • persist() both DataFrames, then Spark will use Shuffle Join

What solved this eventually was persisting both data frames before join.

I looked at the execution plan before and after persisting the data frames, and the strange thing was that before persisting spark tried to perform a BroadcastHashJoin, which clearly failed due to large size of the data frame, and after persisting the execution plan showed that the join will be ShuffleHashJoin, that completed without any issues.

If you want to know more about Spark, then do check out this awesome video tutorial:

31k questions

32.8k answers

501 comments

693 users

Browse Categories

...