classes = ['one','two','three','one','three']
feature = [[0,1,1,0],[0,1,0,1],[1,1,0,0],[0,0,0,0],[0,1,1,1]]
from sklearn.naive_bayes import BernoulliNB
clf = BernoulliNB()
clf.fit(feature,classes)
clf.predict_proba([0,1,1,0])
>> array([[ 0.48247836, 0.40709111, 0.11043053]])