Try the below code, which is basically used to perform Bivariate and Univariate analysis.
import seaborn as sns
import numpy as np
import pandas as pd
df = pd.DataFrame({'Income': [54,23,44,55,66,],
'Population':[77,88,87,88,89],
'Number':[1,1,0,0],
'Category':['A','A','B','B','C']})
### Univariate analysis
sns.distplot(df.Income) # numeric
sns.boxplot(df.Income) # numeric
sns.distplot(df.Population)
sns.countplot(df.Category) # categorical
sns.countplot(df.Number)
## Bivariate analysis
sns.jointplot('Income', 'Population', data = df, kind='scatter')
sns.lmplot(df.Income, df.Population, data=df, hue='Number', fit_reg=False)
sns.countplot(Category, hue = 'Number', data=df)
## Multivariate analysis
sns.pairplot(df.select_dtypes(include=[np.int, np.float]])