import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
test_data = pd.read_csv('test.csv')
train_data = pd.read_csv('train.csv')
# Replacing Nan values here
train_data['status']=train_data['status'].fillna(2.0)
train_data['hedge_value']=train_data['hedge_value'].fillna(2.0)
train_data['indicator_code']=train_data['indicator_code'].fillna(2.0)
train_data['portfolio_id']=train_data['portfolio_id'].fillna('PF99999999')
train_data['desk_id']=train_data['desk_id'].fillna('DSK99999999')
train_data['office_id']=train_data['office_id'].fillna('OFF99999999')
x_train = train_data.iloc[:, :-1].values
y_train = train_data.iloc[:, 17].values
# =============================================================================
# from sklearn.preprocessing import Imputer
# imputer = Imputer(missing_values="NaN", strategy="mean", axis=0)
# imputer.fit(x_train[:, 15:17])
# x_train[:, 15:17] = imputer.fit_transform(x_train[:, 15:17])
#
# imputer.fit(x_train[:, 12:13])
# x_train[:, 12:13] = imputer.fit_transform(x_train[:, 12:13])
# =============================================================================
# Encoding categorical data, i.e. Text data, since calculation happens on numbers only, so having text like
# Country name, Purchased status will give trouble
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
x_train[:, 0] = labelencoder_X.fit_transform(x_train[:, 0])
x_train[:, 1] = labelencoder_X.fit_transform(x_train[:, 1])
x_train[:, 2] = labelencoder_X.fit_transform(x_train[:, 2])
x_train[:, 3] = labelencoder_X.fit_transform(x_train[:, 3])
x_train[:, 6] = labelencoder_X.fit_transform(x_train[:, 6])
x_train[:, 8] = labelencoder_X.fit_transform(x_train[:, 8])
x_train[:, 14] = labelencoder_X.fit_transform(x_train[:, 14])
# =============================================================================
# import numpy as np
# x_train[:, 3] = x_train[:, 3].reshape(x_train[:, 3].size,1)
# x_train[:, 3] = x_train[:, 3].astype(np.float64, copy=False)
# np.isnan(x_train[:, 3]).any()
# =============================================================================
# =============================================================================
# from sklearn.preprocessing import StandardScaler
# sc_X = StandardScaler()
# x_train = sc_X.fit_transform(x_train)
# =============================================================================
onehotencoder = OneHotEncoder(categorical_features=[0,1,2,3,6,8,14])
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
Traceback (most recent call last):
File "<ipython-input-4-4992bf3d00b8>", line 58, in <module>
x_train = onehotencoder.fit_transform(x_train).toarray() # Replace Country Names with One Hot Encoding.
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 2019, in fit_transform
self.categorical_features, copy=True)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/data.py", line 1809, in _transform_selected
X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 453, in check_array
_assert_all_finite(array)
File "/Users/parthapratimneog/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py", line 44, in _assert_all_finite
" or a value too large for %r." % X.dtype)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').