Not sure why I'm having a difficult time with this, it seems so simple considering it's fairly easy to do in R or pandas. I wanted to avoid using pandas though since I'm dealing with a lot of data, and I believe toPandas() loads all the data into the driver’s memory in pyspark.
I have 2 dataframes: df1 and df2. I want to filter df1 (remove all rows) where df1.userid = df2.userid AND df1.group = df2.group. I wasn't sure if I should use filter(), join(), or sql For example:
df1:
+------+----------+--------------------+
|userid| group | all_picks |
+------+----------+--------------------+
| 348| 2|[225, 2235, 2225] |
| 567| 1|[1110, 1150] |
| 595| 1|[1150, 1150, 1150] |
| 580| 2|[2240, 2225] |
| 448| 1|[1130] |
+------+----------+--------------------+
df2:
+------+----------+---------+
|userid| group | pick |
+------+----------+---------+
| 348| 2| 2270|
| 595| 1| 2125|
+------+----------+---------+
Result I want:
+------+----------+--------------------+
|userid| group | all_picks |
+------+----------+--------------------+
| 567| 1|[1110, 1150] |
| 580| 2|[2240, 2225] |
| 448| 1|[1130] |
+------+----------+--------------------+