I have a big list consisting of 31 nested dataframes. Each list dataframe has two strings: timestamp and measurement data. I want to convert them into individual dataframes.
biglist = [list1,list2,.........list31]
df1 = biglist[0]
.
.
df31 = biglist[30]
print(df1)
02/01/2019 09:30:23.000 26.77196
02/01/2019 10:10:32.000 59.66217
02/01/2019 10:50:32.000 85.40406
02/01/2019 11:30:32.000 61.95119
Now I am typing 31 lines to do it. Is there a simplest way of doing it? using for loop? etc.
I am using dictionary to call each dataframe. For iterating through dictionary, I am doing this
df=dict(enumerate(biglist1[1]))
for i,x in df:
# print(i,x)
df[i] = df[i].apply(pd.to_numeric)
df[i].index = pd.to_datetime(df[i].index)
It is working successfully with no errors. Now I want to combine data from 24 dataframes only. Code is
df[0]['time']=df[0].index ### considering POA as reference dataframe
df[0]['time'] = df[0]['time'].apply(pd.to_datetime) # print(df[0].index) # print(dfm24.index) dfm1.dtypes
l=[]
s1 = []
for i,x in enumerate(df): ## dfm24.duplicated(subset=None, keep='first')
s1=df[0].reindex(df[i].index,method='nearest')
b = 1
if i>8:
b = 2
if i==1:
l.append(s1.join(df[i]).set_index('time').add_suffix(df[i].columns[0][-b:]))
if (i > 1) & (i<25):
l.append(s1.join(df[i]).set_index('time').reindex(l[0].index,method='nearest').add_suffix(df[i].columns[0][-b:]))
combdf = pd.concat(l,1) # combdf.dtypes
This code is working successfully with no errors.