Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
0 votes
2 views
in Data Science by (17.6k points)

I am receiving the following error when importing pandas in a Python program

monas-mbp:book mona$ sudo pip install python-dateutil

Requirement already satisfied (use --upgrade to upgrade): python-dateutil in /System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python

Cleaning up...

monas-mbp:book mona$ python t1.py

No module named dateutil.parser

Traceback (most recent call last):

  File "t1.py", line 4, in <module>

    import pandas as pd

  File "/Library/Python/2.7/site-packages/pandas/__init__.py", line 6, in <module>

    from . import hashtable, tslib, lib

  File "tslib.pyx", line 31, in init pandas.tslib (pandas/tslib.c:48782)

ImportError: No module named dateutil.parser

Also here's the program:

import codecs 

from math import sqrt

import numpy as np

import pandas as pd

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,

                      "Norah Jones": 4.5, "Phoenix": 5.0,

                      "Slightly Stoopid": 1.5,

                      "The Strokes": 2.5, "Vampire Weekend": 2.0},

         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,

                 "Deadmau5": 4.0, "Phoenix": 2.0,

                 "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},

         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,

                  "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,

                  "Slightly Stoopid": 1.0},

         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,

                 "Deadmau5": 4.5, "Phoenix": 3.0,

                 "Slightly Stoopid": 4.5, "The Strokes": 4.0,

                 "Vampire Weekend": 2.0},

         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,

                    "Norah Jones": 4.0, "The Strokes": 4.0,

                    "Vampire Weekend": 1.0},

         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0,

                     "Norah Jones": 5.0, "Phoenix": 5.0,

                     "Slightly Stoopid": 4.5, "The Strokes": 4.0,

                     "Vampire Weekend": 4.0},

         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,

                 "Norah Jones": 3.0, "Phoenix": 5.0,

                 "Slightly Stoopid": 4.0, "The Strokes": 5.0},

         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,

                      "Phoenix": 4.0, "Slightly Stoopid": 2.5,

                      "The Strokes": 3.0}

        }

class recommender:

    def __init__(self, data, k=1, metric='pearson', n=5):

        """ initialize recommender

        currently, if data is dictionary the recommender is initialized

        to it.

        For all other data types of data, no initialization occurs

        k is the k value for k nearest neighbor

        metric is which distance formula to use

        n is the maximum number of recommendations to make"""

        self.k = k

        self.n = n

        self.username2id = {}

        self.userid2name = {}

        self.productid2name = {}

        # for some reason I want to save the name of the metric

        self.metric = metric

        if self.metric == 'pearson':

            self.fn = self.pearson

        #

        # if data is dictionary set recommender data to it

        #

        if type(data).__name__ == 'dict':

            self.data = data

    def convertProductID2name(self, id):

        """Given product id number return product name"""

        if id in self.productid2name:

            return self.productid2name[id]

        else:

            return id

    def userRatings(self, id, n):

        """Return n top ratings for user with id"""

        print ("Ratings for " + self.userid2name[id])

        ratings = self.data[id]

        print(len(ratings))

        ratings = list(ratings.items())

        ratings = [(self.convertProductID2name(k), v)

                   for (k, v) in ratings]

        # finally sort and return

        ratings.sort(key=lambda artistTuple: artistTuple[1],

                     reverse = True)

        ratings = ratings[:n]

        for rating in ratings:

            print("%s\t%i" % (rating[0], rating[1]))

    def loadBookDB(self, path=''):

        """loads the BX book dataset. Path is where the BX files are

        located"""

        self.data = {}

        i = 0

        #

        # First load book ratings into self.data

        #

        f = codecs.open(path + "BX-Book-Ratings.csv", 'r', 'utf8')

        for line in f:

            i += 1

            #separate line into fields

            fields = line.split(';')

            user = fields[0].strip('"')

            book = fields[1].strip('"')

            rating = int(fields[2].strip().strip('"'))

            if user in self.data:

                currentRatings = self.data[user]

            else:

                currentRatings = {}

            currentRatings[book] = rating

            self.data[user] = currentRatings

        f.close()

        #

        # Now load books into self.productid2name

        # Books contains isbn, title, and author among other fields

        #

        f = codecs.open(path + "BX-Books.csv", 'r', 'utf8')

        for line in f:

            i += 1

            #separate line into fields

            fields = line.split(';')

            isbn = fields[0].strip('"')

            title = fields[1].strip('"')

            author = fields[2].strip().strip('"')

            title = title + ' by ' + author

            self.productid2name[isbn] = title

        f.close()

        #

        #  Now load user info into both self.userid2name and

        #  self.username2id

        #

        f = codecs.open(path + "BX-Users.csv", 'r', 'utf8')

        for line in f:

            i += 1

            #print(line)

            #separate line into fields

            fields = line.split(';')

            userid = fields[0].strip('"')

            location = fields[1].strip('"')

            if len(fields) > 3:

                age = fields[2].strip().strip('"')

            else:

                age = 'NULL'

            if age != 'NULL':

                value = location + '  (age: ' + age + ')'

            else:

                value = location

            self.userid2name[userid] = value

            self.username2id[location] = userid

        f.close()

        print(i)

    def pearson(self, rating1, rating2):

        sum_xy = 0

        sum_x = 0

        sum_y = 0

        sum_x2 = 0

        sum_y2 = 0

        n = 0

        for key in rating1:

            if key in rating2:

                n += 1

                x = rating1[key]

                y = rating2[key]

                sum_xy += x * y

                sum_x += x

                sum_y += y

                sum_x2 += pow(x, 2)

                sum_y2 += pow(y, 2)

        if n == 0:

            return 0

        # now compute denominator

        denominator = (sqrt(sum_x2 - pow(sum_x, 2) / n)

                       * sqrt(sum_y2 - pow(sum_y, 2) / n))

        if denominator == 0:

            return 0

        else:

            return (sum_xy - (sum_x * sum_y) / n) / denominator

    def computeNearestNeighbor(self, username):

        """creates a sorted list of users based on their distance to

        username"""

        distances = []

        for instance in self.data:

            if instance != username:

                distance = self.fn(self.data[username],

                                   self.data[instance])

                distances.append((instance, distance))

        # sort based on distance -- closest first

        distances.sort(key=lambda artistTuple: artistTuple[1],

                       reverse=True)

        return distances

    def recommend(self, user):

       """Give list of recommendations"""

       recommendations = {}

       # first get list of users  ordered by nearness

       nearest = self.computeNearestNeighbor(user)

       #

       # now get the ratings for the user

       #

       userRatings = self.data[user]

       #

       # determine the total distance

       totalDistance = 0.0

       for i in range(self.k):

          totalDistance += nearest[i][1]

       # now iterate through the k nearest neighbors

       # accumulating their ratings

       for i in range(self.k):

          # compute slice of pie 

          weight = nearest[i][1] / totalDistance

          # get the name of the person

          name = nearest[i][0]

          # get the ratings for this person

          neighborRatings = self.data[name]

          # get the name of the person

          # now find bands neighbor rated that user didn't

          for artist in neighborRatings:

             if not artist in userRatings:

                if artist not in recommendations:

                   recommendations[artist] = (neighborRatings[artist]

                                              * weight)

                else:

                   recommendations[artist] = (recommendations[artist]

                                              + neighborRatings[artist]

                                              * weight)

       # now make list from dictionary

       recommendations = list(recommendations.items())

       recommendations = [(self.convertProductID2name(k), v)

                          for (k, v) in recommendations]

       # finally sort and return

       recommendations.sort(key=lambda artistTuple: artistTuple[1],

                            reverse = True)

       # Return the first n items

       return recommendations[:self.n]

r = recommender(users)

# The author implementation

r.loadBookDB('/Users/mona/Downloads/BX-Dump/')

ratings = pd.read_csv('/Users/danialt/BX-CSV-Dump/BX-Book-Ratings.csv', sep=";", quotechar="\"", escapechar="\\")

books = pd.read_csv('/Users/danialt/BX-CSV-Dump/BX-Books.csv', sep=";", quotechar="\"", escapechar="\\")

users = pd.read_csv('/Users/danialt/BX-CSV-Dump/BX-Users.csv', sep=";", quotechar="\"", escapechar="\\")

pivot_rating = ratings.pivot(index='User-ID', columns='ISBN', values='Book-Rating')

1 Answer

0 votes
by (41.4k points)

On Ubuntu you may need to install the package manager pip first:

sudo apt-get install python-pip

Then install the python-dateutil package with:

sudo pip install python-dateutil

Related questions

0 votes
1 answer
0 votes
1 answer
0 votes
1 answer
0 votes
1 answer
0 votes
1 answer

31k questions

32.8k answers

501 comments

693 users

Browse Categories

...