library(XML)
library(RCurl)
library(rlist)
theurl <- getURL("https://en.wikipedia.org/wiki/Brazil_national_football_team",.opts = list(ssl.verifypeer = FALSE) )
tables <- readHTMLTable(theurl)
tables <- list.clean(tables, fun = is.null, recursive = FALSE)
n.rows <- unlist(lapply(tables, function(t) dim(t)[1]))
tables[[which.max(n.rows)]]
V1 V2 V3 V4 V5 V6 V7 V8 V9
1 Opponent Pld W D L GF GA GD Win %
2 Argentina 106 42 27 38 165 160 +5 39.62%
3 Paraguay 80 47 22 11 173 67 +106 58.75%
4 Uruguay 76 36 20 20 136 97 +39 47.36%
5 Chile 72 51 13 8 167 61 +106 70.08%
6 Peru 44 31 9 4 95 29 +66 +69.05%
7 Mexico 41 24 7 10 75 36 +41 58.53%
8 Ecuador 32 26 4 2 94 22 +72 82.75%
9 Bolivia 31 21 5 5 99 25 +74 67.74%
10 Colombia 31 19 9 3 62 15 +47 61.29%
11 England 26 11 11 4 34 23 +11 44.00%
12 Venezuela 25 21 3 1 89 8 +81 86.95%
13 Germany [note 2] 23 13 5 5 41 31 +10 56.52%
14 Portugal 20 13 3 4 39 16 +23 65.00%
15 United States 20 19 0 1 43 12 +31 95.00%
16 Serbia [note 3] 20 11 7 2 39 23 +16 55.00%
17 Czech Republic[note 4] 19 11 6 2 32 15 +17 57.89%
18 Italy 16 8 3 5 30 23 +7 50.00%
19 France 16 7 4 5 27 20 +7 43.75%
20 Sweden 15 10 3 2 35 17 +18 66.66%
21 Russia [note 5] 13 9 4 0 26 7 +19 69.23%
22 Poland 12 9 2 1 37 19 +18 75.00%
23 Netherlands 12 3 5 4 15 18 -3 25.00%
24 Japan 12 10 2 0 34 5 +29 81.81%
25 Costa Rica 11 10 0 1 34 9 +25 90.00%
26 Scotland 10 8 2 0 16 3 +13 80.00%
27 Wales 10 8 1 1 20 5 +15 80.00%
28 Austria 10 7 3 0 17 5 +12 70.00%
29 Spain 9 5 2 2 14 8 +6 55.55%
30 Switzerland 9 3 4 2 11 9 +2 33.30%