I can't figure out if I've setup my binary classification problem correctly. I labeled the positive class 1 and the negative 0. However It is my understanding that by default scikit-learn uses class 0 as the positive class in its confusion matrix (so the inverse of how I set it up). This is confusing to me. Is the top row, in scikit-learn's default setting, the positive or negative class? Lets assume the confusion matrix output:
confusion_matrix(y_test, preds)
[ [30 5]
[2 42] ]
How would it look like in a confusion matrix? Are the actual instances the rows or the columns in scikit-learn?
prediction prediction
0 1 1 0
----- ----- ----- -----
0 | TN | FP (OR) 1 | TP | FP
actual ----- ----- actual ----- -----
1 | FN | TP 0 | FN | TN