Let's say you have the accompanying DataFrame:
I checked the docs and you ought to likely utilize the pandas.set_option API to do this:
In [13]: df
Out[13]:
a b c
0 4.405544e+08 1.425305e+08 6.387200e+08
1 8.792502e+08 7.135909e+08 4.652605e+07
2 5.074937e+08 3.008761e+08 1.781351e+08
3 1.188494e+07 7.926714e+08 9.485948e+08
4 6.071372e+08 3.236949e+08 4.464244e+08
5 1.744240e+08 4.062852e+08 4.456160e+08
6 7.622656e+07 9.790510e+08 7.587101e+08
7 8.762620e+08 1.298574e+08 4.487193e+08
8 6.262644e+08 4.648143e+08 5.947500e+08
9 5.951188e+08 9.744804e+08 8.572475e+08
In [14]: pd.set_option('float_format', '{:f}'.format)
In [15]: df
Out[15]:
a b c
0 440554429.333866 142530512.999182 638719977.824965
1 879250168.522411 713590875.479215 46526045.819487
2 507493741.709532 300876106.387427 178135140.583541
3 11884941.851962 792671390.499431 948594814.816647
4 607137206.305609 323694879.619369 446424361.522071
5 174424035.448168 406285189.907148 445616045.754137
6 76226556.685384 979050957.963583 758710090.127867
7 876261954.607558 129857447.076183 448719292.453509
8 626264394.999419 464814260.796770 594750038.747595
9 595118819.308896 974480400.272515 857247528.610996
In [16]: df.describe()
Out[16]:
a b c
count 10.000000 10.000000 10.000000
mean 479461624.877280 522785202.100082 536344333.626082
std 306428177.277935 320806568.078629 284507176.411675
min 11884941.851962 129857447.076183 46526045.819487
25% 240956633.919592 306580799.695412 445818124.696121
50% 551306280.509214 435549725.351959 521734665.600552
75% 621482597.825966 772901261.744377 728712562.052142
max 879250168.522411 979050957.963583 948594814.816647
In [7]: df
Out[7]:
a b c
0 4.405544e+08 1.425305e+08 6.387200e+08
1 8.792502e+08 7.135909e+08 4.652605e+07
2 5.074937e+08 3.008761e+08 1.781351e+08
3 1.188494e+07 7.926714e+08 9.485948e+08
4 6.071372e+08 3.236949e+08 4.464244e+08
5 1.744240e+08 4.062852e+08 4.456160e+08
6 7.622656e+07 9.790510e+08 7.587101e+08
7 8.762620e+08 1.298574e+08 4.487193e+08
8 6.262644e+08 4.648143e+08 5.947500e+08
9 5.951188e+08 9.744804e+08 8.572475e+08
In [8]: df.describe()
Out[8]:
a b c
count 1.000000e+01 1.000000e+01 1.000000e+01
mean 4.794616e+08 5.227852e+08 5.363443e+08
std 3.064282e+08 3.208066e+08 2.845072e+08
min 1.188494e+07 1.298574e+08 4.652605e+07
25% 2.409566e+08 3.065808e+08 4.458181e+08
50% 5.513063e+08 4.355497e+08 5.217347e+08
75% 6.214826e+08 7.729013e+08 7.287126e+08
max 8.792502e+08 9.790510e+08 9.485948e+08
You need to mess with the pandas.options.display.float_format property. Note, in my code I've utilized import pandas as pd. A handy solution is a like thing:
In [29]: pd.options.display.float_format = "{:.2f}".format
In [10]: df
Out[10]:
a b c
0 440554429.33 142530513.00 638719977.82
1 879250168.52 713590875.48 46526045.82
2 507493741.71 300876106.39 178135140.58
3 11884941.85 792671390.50 948594814.82
4 607137206.31 323694879.62 446424361.52
5 174424035.45 406285189.91 445616045.75
6 76226556.69 979050957.96 758710090.13
7 876261954.61 129857447.08 448719292.45
8 626264395.00 464814260.80 594750038.75
9 595118819.31 974480400.27 857247528.61
In [11]: df.describe()
Out[11]:
a b c
count 10.00 10.00 10.00
mean 479461624.88 522785202.10 536344333.63
std 306428177.28 320806568.08 284507176.41
min 11884941.85 129857447.08 46526045.82
25% 240956633.92 306580799.70 445818124.70
50% 551306280.51 435549725.35 521734665.60
75% 621482597.83 772901261.74 728712562.05
max 879250168.52 979050957.96 948594814.82
Want to become an expert in Python? Join the python course fast!