Back

Explore Courses Blog Tutorials Interview Questions
0 votes
1 view
in Big Data Hadoop & Spark by (11.4k points)

I'm trying to convert Pandas DF into Spark one. DF head:

10000001,1,0,1,12:35,OK,10002,1,0,9,f,NA,24,24,0,3,9,0,0,1,1,0,0,4,543
10000001,2,0,1,12:36,OK,10002,1,0,9,f,NA,24,24,0,3,9,2,1,1,3,1,3,2,611
10000002,1,0,4,12:19,PA,10003,1,1,7,f,NA,74,74,0,2,15,2,0,2,3,1,2,2,691


Code:

dataset = pd.read_csv("data/AS/test_v2.csv")
sc = SparkContext(conf=conf)
sqlCtx = SQLContext(sc)
sdf = sqlCtx.createDataFrame(dataset)


And I got an error:

TypeError: Can not merge type <class 'pyspark.sql.types.StringType'> and <class 'pyspark.sql.types.DoubleType'>
 

1 Answer

0 votes
by (32.3k points)

You can avoid type related errors by imposing a schema as follows:

Suppose a text file was created (samp.csv) with the original data (as above) and hypothetical column names were inserted ("col1","col2",...,"col25").

import pyspark

from pyspark.sql import SparkSession

import pandas as pd

spark = SparkSession.builder.appName('pandasToSparkDF').getOrCreate()

pdDF = pd.read_csv("samp.csv")

contents of the pandas data frame:

pdDF

col1    col2 col3    col4 col5 col6    col7 col8 col9 col10   ... col16 col17 col18 col19   col20 col21 col22 col23 col24   col25

0   10000001    1 0 1 12:35   OK 10002 1 0 9   ... 3 9 0 0 1 1   0 0 4 543

1   10000001    2 0 1 12:36   OK 10002 1 0 9   ... 3 9 2 1 1 3   1 3 2 611

2   10000002    1 0 4 12:19   PA 10003 1 1 7   ... 2 15 2 0 2 3   1 2 2 691

Next, create the schema:

from pyspark.sql.types import *

mySchema = StructType([ StructField("Col1", LongType(), True)\

                       ,StructField("Col2", IntegerType(), True)\

                       ,StructField("Col3", IntegerType(), True)\

                       ,StructField("Col4", IntegerType(), True)\

                       ,StructField("Col5", StringType(), True)\

                       ,StructField("Col6", StringType(), True)\

                       ,StructField("Col7", IntegerType(), True)\

                       ,StructField("Col8", IntegerType(), True)\

                       ,StructField("Col9", IntegerType(), True)\

                       ,StructField("Col10", IntegerType(), True)\

                       ,StructField("Col11", StringType(), True)\

                       ,StructField("Col12", StringType(), True)\

                       ,StructField("Col13", IntegerType(), True)\

                       ,StructField("Col14", IntegerType(), True)\

                       ,StructField("Col15", IntegerType(), True)\

                       ,StructField("Col16", IntegerType(), True)\

                       ,StructField("Col17", IntegerType(), True)\

                       ,StructField("Col18", IntegerType(), True)\

                       ,StructField("Col19", IntegerType(), True)\

                       ,StructField("Col20", IntegerType(), True)\

                       ,StructField("Col21", IntegerType(), True)\

                       ,StructField("Col22", IntegerType(), True)\

                       ,StructField("Col23", IntegerType(), True)\

                       ,StructField("Col24", IntegerType(), True)\

                       ,StructField("Col25", IntegerType(), True)])

Note: True (implies nullable allowed)

Create the pyspark dataframe:

df = spark.createDataFrame(pdDF,schema=mySchema)

Confirm the pandas data frame is now a pyspark data frame:

type(df)

Now you have :

pyspark.sql.dataframe.DataFrame

If you wish to learn Spark visit this Spark Tutorial.

Related questions

Browse Categories

...