This Data Scientist course lets you master skills, such as data analytics, R programming, statistical computing, Machine Learning algorithms, k-means clustering, and more. It includes multiple hands-on exercises and project work in the domains of banking, finance, entertainment, etc. Intellipaat’s online Data Science courses are well recognized across 500+ employers helping you to land in your dream job.
This Data Scientist course online provides detailed learning through self-paced videos and live instructor-led sessions that help you gain skills in the shortest possible time. Data Scientists are among the highest-paid and most in demand professionals. Our in-depth Data Science programs cover ‘What is Data Science?,’ statistical methods, data acquisition and analysis, Machine Learning algorithms, predictive analytics, data modeling, etc. At the end of the program, you will work on building a recommendation engine for an ecommerce site and will work on a real-time capstone project.
The average annual salary of Data Scientists as per Indeed is approximately US$122,801 in the United States.
The demand for Data Scientists far exceeds the supply. This is a serious problem in a data-driven world that we are living in today. As a result, most organizations are willing to pay high salaries for professionals with appropriate Data Science skills.
Data science training online will help you become proficient in Data Science, R programming language, Data Analysis, Big Data, and more. Thus, you can easily accelerate your career in this evolving domain and take it to the next level.
Â
In this program, you will learn about:
This course can be signed up by:
There are no prerequisites for taking up this course. If you like mathematics, you can accelerate your learning through these Data Scientist online courses.
In the United States, the average salary of a Data Scientist is US$112,957. The average salary of Data Scientists in India is ₹853,191.
Many top companies hire Data Scientists. A few of them are Amazon, Google, IBM, Facebook, Microsoft, Walmart, Target, Visa, Bank of America, Accenture, Fractal Analytics, etc.
There are several ways to become a Data Scientist. Evidently, Data Scientists use a large number of Data Science tools/technologies, such as R and Python programming language, and analysis tools, like SAS.
As a budding Data Scientist, you should be familiar with data analysis, statistical software packages, data visualization and handling large data sets. Data Scientist major time spent in data exploration and data wrangling.
Criteria | Data Analyst | Business Analyst | Data Scientist |
Skill set | Analyzing business needs | Analyzing historical data | Making data-driven decisions |
Who is eligible? | Anybody can learn | Anybody can learn | Anybody can learn |
What do they do? | Full life cycle analysis, including business needs, activities, and designing | Implementing technology solutions and analyzing and reporting business capabilities | Statistical analysis and the development of Machine Learning systems |
Average salaries | US$68,465 | US$75,218 | US$112,957 |
This Data Scientist training online includes industry-based projects, which will help you in gaining hands-on experience and prepare you for challenging Data Science roles.
Project Name | Industry | Objective |
Cold Start Problem in Data Science | Entertainment | Building a recommender system without historical data |
Designing a Movie Recommendation Engine | Entertainment | Building a movie recommendation engine based on user interests |
Making Sense of Customer Buying Patterns | Ecommerce | Deploying target selling to customers |
Fraud Detection in the Banking System | BFSI | Deploying Data Science to detect fraudulent activities and taking remedial actions |
Data Scientists should be aware of the business pain points and ask the right questions.
They need to collect enough data to understand the problem in hand and to better solve it in terms of time, money, and resources.
Data is rarely used in its original form. It must be processed, and there are several ways to convert it into a usable format.
Once the data has been processed and converted into a usable form, Data Scientists must examine it to determine the characteristics and find out obvious trends, correlations, and more.
To understand the data, they use a variety of tool libraries, such as Machine Learning, statistics and probability, linear and logistic regression, time series analysis, and more.
At last, results must be communicated to the right stakeholders, laying the groundwork for all identified issues.
Talk to Us
1.1 What is Data Science?
1.2 Significance of Data Science in today’s data-driven world, its applications of, , lifecycle, and its components
1.3 Introduction to R programming and RStudio
Hands-on Exercise:
1. Installation of RStudio
2. Implementing simple mathematical operations and logic using R operators, loops, if statements, and switch cases
2.1 Introduction to data exploration
2.2 Importing and exporting data to/from external sources
2.3 What are data exploratory analysis and data importing?
2.4 DataFrames, working with them, accessing individual elements, vectors, factors, operators, in-built functions, conditional and looping statements, user-defined functions, and data types
Hands-on Exercise:
1. Accessing individual elements of customer churn data
2. Modifying and extracting results from the dataset using user-defined functions in R
3.1 Need for data manipulation
3.2 Introduction to the dplyr package
3.3 Selecting one or more columns with select(), filtering records on the basis of a condition with filter(), adding new columns with mutate(), sampling, and counting
3.4 Combining different functions with the pipe operator and implementing SQL-like operations with sqldf
Hands-on Exercise:
1. Implementing dplyr
2. Performing various operations for manipulating data and storing it
4.1 Introduction to visualization
4.2 Different types of graphs, the grammar of graphics, the ggplot2 package, categorical distribution with geom_bar(), numerical distribution with geom_hist(), building frequency polygons with geom_freqpoly(), and making a scatterplot with geom_pont()
4.3 Multivariate analysis with geom_boxplot
4.4 Univariate analysis with a barplot, a histogram and a density plot, and multivariate distribution
4.5 Creating barplots for categorical variables using geom_bar(), and adding themes with the theme() layer
4.6 Visualization with plotly, frequency plots with geom_freqpoly(), multivariate distribution with scatter plots and smooth lines, continuous distribution vs categorical distribution with box-plots, and sub grouping plots
4.7 Working with co-ordinates and themes to make graphs more presentable, understanding plotly and various plots, and visualization with ggvis
4.8 Geographic visualization with ggmap() and building web applications with shinyR
Hands-on Exercise:
1. Creating data visualization to understand the customer churn ratio using ggplot2 charts
2. Using plotly for importing and analyzing data
3. Visualizing tenure, monthly charges, total charges, and other individual columns using a scatter plot
5.1 Why do we need statistics?
5.2 Categories of statistics, statistical terminology, types of data, measures of central tendency, and measures of spread
5.3 Correlation and covariance, standardization and normalization, probability and the types, hypothesis testing, chi-square testing, ANOVA, normal distribution, and binary distribution
Hands-on Exercise:
1. Building a statistical analysis model that uses quantification, representations, and experimental data
2. Reviewing, analyzing, and drawing conclusions from the data
6.1 Introduction to Machine Learning
6.2 Introduction to linear regression, predictive modeling, simple linear regression vs multiple linear regression, concepts, formulas, assumptions, and residuals in Linear Regression, and building a simple linear model
6.3 Predicting results and finding the p-value and an introduction to logistic regression
6.4 Comparing linear regression with logistics regression and bivariate logistic regression with multivariate logistic regression
6.5 Confusion matrix the accuracy of a model, understanding the fit of the model, threshold evaluation with ROCR, and using qqnorm() and qqline()
6.6 Understanding the summary results with null hypothesis, F-statistic, and
building linear models with multiple independent variables
Hands-on Exercise:
1. Modeling the relationship within data using linear predictor functions
2. Implementing linear and logistics regression in R by building a model with ‘tenure’ as the dependent variable
7.1 Introduction to logistic regression
7.2 Logistic regression concepts, linear vs logistic regression, and math behind logistic regression
7.3 Detailed formulas, logit function and odds, bivariate logistic regression, and Poisson regression
7.4 Building a simple binomial model and predicting the result, making a confusion matrix for evaluating the accuracy, true positive rate, false positive rate, and threshold evaluation with ROCR
7.5 Finding out the right threshold by building the ROC plot, cross validation, multivariate logistic regression, and building logistic models with multiple independent variables
7.6 Real-life applications of logistic regression
Hands-on Exercise:
1. Implementing predictive analytics by describing data
2. Explaining the relationship between one dependent binary variable and one or more binary variables
3. Using glm() to build a model, with ‘Churn’ as the dependent variable
8.1 What is classification? Different classification techniques
8.2 Introduction to decision trees
8.3 Algorithm for decision tree induction and building a decision tree in R
8.4 Confusion matrix and regression trees vs classification trees
8.5 Introduction to bagging
8.6 Random forest and implementing it in R
8.7 What is Naive Bayes? Computing probabilities
8.8 Understanding the concepts of Impurity function, Entropy, Gini index, and Information gain for the right split of node
8.9 Overfitting, pruning, pre-pruning, post-pruning, and cost-complexity pruning, pruning a decision tree and predicting values, finding out the right number of trees, and evaluating performance metrics
Hands-on Exercise:
1. Implementing random forest for both regression and classification problems
2. Building a tree, pruning it using ‘churn’ as the dependent variable, and building a random forest with the right number of trees
3. Using ROCR for performance metrics
9.1 What is Clustering? Its use cases
9.2 what is k-means clustering? What is canopy clustering?
9.3 What is hierarchical clustering?
9.4 Introduction to unsupervised learning
9.5 Feature extraction, clustering algorithms, and the k-means clustering algorithm
9.6 Theoretical aspects of k-means, k-means process flow, k-means in R, implementing k-means, and finding out the right number of clusters using a scree plot
9.7 Dendograms, understanding hierarchical clustering, and implementing it in R
9.8 Explanation of Principal Component Analysis (PCA) in detail and implementing PCA in R
Hands-on Exercise:
1. Deploying unsupervised learning with R to achieve clustering and dimensionality reduction
2. K-means clustering for visualizing and interpreting results for the customer churn data
10.1 Introduction to association rule mining and MBA
10.2 Measures of association rule mining: Support, confidence, lift, and apriori algorithm, and implementing them in R
10.3 Introduction to recommendation engines
10.4 User-based collaborative filtering and item-based collaborative filtering, and implementing a recommendation engine in R
10.5 Recommendation engine use cases
Hands-on Exercise:
1. Deploying association analysis as a rule-based Machine Learning method
2. Identifying strong rules discovered in databases with measures based on interesting discoveries
11.1 Introducing Artificial Intelligence and Deep Learning
11.2 What is an artificial neural network? TensorFlow: The computational framework for building AI models
11.3 Fundamentals of building ANN using TensorFlow and working with TensorFlow in R
12.1 What is a time series? The techniques, applications, and components of time series
12.2 Moving average, smoothing techniques, and exponential smoothing
12.3 Univariate time series models and multivariate time series analysis
12.4 ARIMA model
12.5 Time series in R, sentiment analysis in R (Twitter sentiment analysis), and text analysis
Hands-on Exercise:
1. Analyzing time series data
2. Analyzing the sequence of measurements that follow a non-random order to identify the nature of phenomenon and forecast the future values in the series
13.1 Introduction to Support Vector Machine (SVM)
13.2 Data classification using SVM
13.3 SVM algorithms using separable and inseparable cases
13.4 Linear SVM for identifying margin hyperplane
14.1 What is the Bayes theorem?
14.2 What is Naïve Bayes Classifier?
14.3 Classification Workflow
14.4 How Naive Bayes classifier works and classifier building in Scikit-Learn
14.5 Building a probabilistic classification model using Naïve Bayes and the zero probability problem
15.1 Introduction to the concepts of text mining
15.2 Text mining use cases and understanding and manipulating the text with ‘tm’ and ‘stringR’
15.3 Text mining algorithms and the quantification of the text
15.4 TF-IDF and after TF-IDF
Free Career Counselling
You can unlock your Intellipaat certificate in three simple steps:
The Data Science certification you receive from Intellipaat is valid for your entire lifetime and is recognized by top organizations across the world.
On successfully completing the Data Science online course and passing the exam, you will receive Intellipaat’s Data Science certificate via our Learning Management System. You can download or share your certificate from this through either email or LinkedIn.
Yes, the certification given by Intellipaat is industry-recognized. Besides, due to our affiliation with IBM, you will also receive a Data Science course completion certificate from IBM.
Intellipaat offers the best Data Science courses online for professionals who want to expand their knowledge base and start a career in this field. There are many reasons for choosing Intellipaat:
At Intellipaat, you can enroll in either the instructor-led online training or self-paced training. Apart from this, Intellipaat also offers corporate training for organizations to upskill their workforce. All trainers at Intellipaat have 12+ years of relevant industry experience, and they have been actively working as consultants in the same domain, which has made them subject matter experts. Go through the sample videos to check the quality of our trainers.
Intellipaat is offering the 24/7 query resolution, and you can raise a ticket with the dedicated support team at anytime. You can avail of the email support for all your queries. If your query does not get resolved through email, we can also arrange one-on-one sessions with our trainers.
You would be glad to know that you can contact Intellipaat support even after the completion of the training. We also do not put a limit on the number of tickets you can raise for query resolution and doubt clearance.
Intellipaat is offering you the most updated, relevant, and high-value real-world projects as part of the training program. This way, you can implement the learning that you have acquired in real-world industry setup. All training comes with multiple projects that thoroughly test your skills, learning, and practical knowledge, making you completely industry-ready.
You will work on highly exciting projects in the domains of high technology, ecommerce, marketing, sales, networking, banking, insurance, etc. After completing the projects successfully, your skills will be equal to 6 months of rigorous industry experience.
Intellipaat actively provides placement assistance to all learners who have successfully completed the training. For this, we are exclusively tied-up with over 80 top MNCs from around the world. This way, you can be placed in outstanding organizations such as Sony, Ericsson, TCS, Mu Sigma, Standard Chartered, Cognizant, and Cisco, among other equally great enterprises. We also help you with the job interview and résumé preparation as well.
You can definitely make the switch from self-paced training to online instructor-led training by simply paying the extra amount. You can join the very next batch, which will be duly notified to you.
Once you complete Intellipaat’s training program, working on real-world projects, quizzes, and assignments and scoring at least 60 percent marks in the qualifying exam, you will be awarded Intellipaat’s course completion certificate. This certificate is very well recognized in Intellipaat-affiliated organizations, including over 80 top MNCs from around the world and some of the Fortune 500companies.
Apparently, no. Our job assistance program is aimed at helping you land in your dream job. It offers a potential opportunity for you to explore various competitive openings in the corporate world and find a well-paid job, matching your profile. The final decision on hiring will always be based on your performance in the interview and the requirements of the recruiter.
Talk to us
Australia, Melbourne, Delhi, Dublin, Hong Kong, Kolkata, Mumbai, Chennai, Dallas, Noida, Pune, Singapore, Sydney, Bangalore, Chicago, Hyderabad, San Francisco, London, New York, Toronto, India, Dubai, Houston, Jersey, Los Angeles, San Jose, Jaipur, Gurgaon, Indore, Ahmedabad, Coimbatore, Kochi, Chandigarh, Bhubaneswar, United States, Germany, Texas, Phoenix, Seattle, Atlanta, Washington, Kansas City, Boston, United Kingdom, Perth, Brisbane, Canberra, Trichy, Nagpur, Vizag, Trivandrum, Mountain View, Ashburn, Charlotte, Austin, San Diego, Irving, Columbus, Sunnyvale, Fremont, Denver, Philadelphia, Vijayawada, Thane, Ireland, Jamshedpur, Kerala, Lucknow, Tamil Nadu, Vadodara, Ludhiana, Surat and Abu Dhabi