Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
0 votes
2 views
in Data Science by (17.6k points)

I uploaded a file to Google spreadsheets (to make a publically accessible example IPython Notebook, with data) I was using the file in it's native form could be read into a Pandas Dataframe. So now I use the following code to read the spreadsheet, works fine but just comes in as string,, and I'm not having any luck trying to get it back into a dataframe (you can get the data)

import requests

r = requests.get('https://docs.google.com/spreadsheet/ccc?key=0Ak1ecr7i0wotdGJmTURJRnZLYlV3M2daNTRubTdwTXc&output=csv')

data = r.content

The data ends up looking like: (1st row headers)

',City,region,Res_Comm,mkt_type,Quradate,National_exp,Alabama_exp,Sales_exp,Inventory_exp,Price_exp,Credit_exp\n0,Dothan,South_Central-Montgomery-Auburn-Wiregrass-Dothan,Residential,Rural,1/15/2010,2,2,3,2,3,3\n10,Foley,South_Mobile-Baldwin,Residential,Suburban_Urban,1/15/2010,4,4,4,4,4,3\n12,Birmingham,North_Central-Birmingham-Tuscaloosa-Anniston,Commercial,Suburban_Urban,1/15/2010,2,2,3,2,2,3\n

The native pandas code that brings in the disk resident file looks like:

df = pd.io.parsers.read_csv('/home/tom/Dropbox/Projects/annonallanswerswithmaster1012013.csv',index_col=0,parse_dates=['Quradate'])

A "clean" solution would be helpful to many to provide an easy way to share datasets for Pandas use! I tried a bunch of alternative with no success and I'm pretty sure I'm missing something obvious again.

Just a Update note The new Google spreadsheet has a different URL pattern Just use this in place of the URL in the above example and or the below answer and you should be fine here is an example:

https://docs.google.com/spreadsheets/d/177_dFZ0i-duGxLiyg6tnwNDKruAYE-_Dd8vAQziipJQ/export?format=csv&id

see solution below from @Max Ghenis which just used pd.read_csv, no need for StringIO or requests...

1 Answer

0 votes
by (41.4k points)

Use read_csv() on a StringIO object. It’s an important pandas function to read csv files and do operations on it:

from io import BytesIO

import requests

r = requests.get('https://docs.google.com/spreadsheet/ccc?key=0Ak1ecr7i0wotdGJmTURJRnZLYlV3M2daNTRubTdwTXc&output=csv')

data = r.content

In [10]: df = pd.read_csv(BytesIO(data), index_col=0,parse_dates=['Quradate'])

In [11]: df.head()

Out[11]: 

          City                                            region     Res_Comm  \

0       Dothan  South_Central-Montgomery-Auburn-Wiregrass-Dothan  Residential   

10       Foley                              South_Mobile-Baldwin  Residential   

12  Birmingham      North_Central-Birmingham-Tuscaloosa-Anniston   Commercial   

38       Brent      North_Central-Birmingham-Tuscaloosa-Anniston  Residential   

44      Athens                 North_Huntsville-Decatur-Florence  Residential   

          mkt_type            Quradate  National_exp  Alabama_exp  Sales_exp  \

0            Rural 2010-01-15 00:00:00             2            2          3   

10  Suburban_Urban 2010-01-15 00:00:00             4            4          4   

12  Suburban_Urban 2010-01-15 00:00:00             2            2          3   

38           Rural 2010-01-15 00:00:00             3            3          3   

44  Suburban_Urban 2010-01-15 00:00:00             4            5          4   

    Inventory_exp  Price_exp  Credit_exp  

0               2          3           3  

10              4          4           3  

12              2          2           3  

38              3          3           2  

44              4          4           4  

31k questions

32.8k answers

501 comments

693 users

Browse Categories

...