import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import keras
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.constraints import maxnorm
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import SGD
from keras.wrappers.scikit_learn import KerasClassifier
from keras.constraints import maxnorm
from keras.utils.np_utils import to_categorical
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from datetime import datetime
import time
from datetime import timedelta
from __future__ import division
seed = 7
np.random.seed(seed)
Y = data['Genre']
del data['Genre']
X = data
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
X = X.as_matrix().astype("float")
calls=[EarlyStopping(monitor='acc', patience=10), ModelCheckpoint('C:/Users/1383921/Documents/NNs/model', monitor='acc', save_best_only=True, mode='auto', period=1)]
def create_baseline():
# create model
model = Sequential()
model.add(Dense(18, input_dim=9, init='normal', activation='relu'))
model.add(Dense(9, init='normal', activation='relu'))
model.add(Dense(12, init='normal', activation='softmax'))
# Compile model
sgd = SGD(lr=0.01, momentum=0.8, decay=0.0, nesterov=False)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
return model
np.random.seed(seed)
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasClassifier(build_fn=create_baseline, nb_epoch=300, batch_size=16, verbose=2)))
pipeline = Pipeline(estimators)
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(pipeline, X, encoded_Y, cv=kfold, fit_params={'mlp__callbacks':calls})
print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))