In keras, when you build a sequential model, the second dimension is related to a time dimension. This means that if your data is of 5-dim with (sample, time, width, length, channel), then you can apply a convolutional layer using TimeDistributed (which is applicable to 4-dim with (sample, width, length, channel)) along a time dimension in order to obtain the 5-d output.
In keras version 2.0, Dense is by default applied to only last dimension (e.g. if you apply Dense(10) to input with shape (n, m, o, p) you'll get output with shape (n, m, o, 10)) that’s why in your case Dense and TimeDistributed(Dense) are equivalents.