I'm trying to compare different ways to aggregate my data.
This is my input data with 2 elements (page,visitor):
(PAG1,V1)
(PAG1,V1)
(PAG2,V1)
(PAG2,V2)
(PAG2,V1)
(PAG1,V1)
(PAG1,V2)
(PAG1,V1)
(PAG1,V2)
(PAG1,V1)
(PAG2,V2)
(PAG1,V3)
Working with a SQL command into Spark SQL with this code:
import sqlContext.implicits._
case class Log(page: String, visitor: String)
val logs = data.map(p => Log(p._1,p._2)).toDF()
logs.registerTempTable("logs")
val sqlResult= sqlContext.sql(
"""select page
,count(distinct visitor) as visitor
from logs
group by page
""")
val result = sqlResult.map(x=>(x(0).toString,x(1).toString))
result.foreach(println)
I get this output:
(PAG1,3) // PAG1 has been visited by 3 different visitors
(PAG2,2) // PAG2 has been visited by 2 different visitors
Now, I would like to get the same result using Dataframes and thiers API, but I can't get the same output:
import sqlContext.implicits._
case class Log(page: String, visitor: String)
val logs = data.map(p => Coppia(p._1,p._2)).toDF()
val result = log.select("page","visitor").groupBy("page").count().distinct
result.foreach(println)
In fact, that's what I get as output:
[PAG1,8] // just the simple page count for every page
[PAG2,4]
It's probably something dumb, but I can't see it right now.