Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
0 votes
2 views
in Data Science by (17.6k points)

I'm performing XGBoost on my flight delay datasets . I executed and trained the dataset however when I tried to find the mean squared error test I got the above error.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(df_late.drop(['DELAY_YN','ARR_DELAY'],axis=1), 

                                                    df_late['ARR_DELAY'], test_size=0.30, random_state=101)

print('Training...')

xg_reg = xgb.XGBRegressor(n_estimators= 2000, max_depth= 5,learning_rate =0.1)

xg_reg.fit(X_train,y_train)

print('Predicting on test set...')

predictions = xg_reg.predict(X_test)

y_test['predicted']=[np.exp(p) for p in predictions]

from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(y_test['ARR_DELAY'],y_test['predicted']))

print('MSE:', metrics.mean_squared_error(y_test['ARR_DELAY'],y_test['predicted']))

print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test['ARR_DELAY'],y_test['predicted'])))

I got the following error

---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)

<ipython-input-141-b9b5e43dd55b> in <module>

      2 

      3 from sklearn import metrics

----> 4 print('MAE:', metrics.mean_absolute_error(y_test['ARR_DELAY'],y_test['predicted']))

      5 print('MSE:', metrics.mean_squared_error(y_test['ARR_DELAY'],y_test['predicted']))

      6 print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test['ARR_DELAY'],y_test['predicted'])))

~/anaconda3/envs/myenv/lib/python3.6/site-packages/pandas/core/series.py in __getitem__(self, key)

    866         key = com.apply_if_callable(key, self)

    867         try:

--> 868             result = self.index.get_value(self, key)

    869 

    870             if not is_scalar(result):

~/anaconda3/envs/myenv/lib/python3.6/site-packages/pandas/core/indexes/base.py in get_value(self, series, key)

   4318         try:

   4319             return self._engine.get_value(s, k,

-> 4320                                           tz=getattr(series.dtype, 'tz', None))

   4321         except KeyError as e1:

   4322             if len(self) > 0 and (self.holds_integer() or self.is_boolean()):

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_value()

pandas/_libs/index.pyx in pandas._libs.index.IndexEngine.get_loc()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()

KeyError: 'ARR_DELAY'

What might be the problem ? I'm very new to Data Science hence any help would be appreciated.

1 Answer

0 votes
by (41.4k points)

1.  We start off by dividing the data into train and test sets

X_train, X_test, y_train, y_test = train_test_split(df_late.drop(['DELAY_YN','ARR_DELAY'],axis=1), 

                                                    df_late['ARR_DELAY'], test_size=0.30, random_state=101)

2.After that, I would suggest you to keep the predictions in a separate array or a Series:

predictions = xg_reg.predict(X_test)

predictions = np.exp(predictions)

from sklearn import metrics

print('MAE:', metrics.mean_absolute_error(y_test, predictions))

y_test is a series not a DataFrame that consists of a single column. 

So, here you do not want y_test['predicted']=[np.exp(p) for p in predictions].

...