I am building my first neural network with LSTM and I have an error in the input size.
I guess the error is in the input parameters, in the size, the dimension but I can not understand the error.
print df.shape
data_dim = 13
timesteps = 13
num_classes = 1
batch_size = 32
model = Sequential()
model.add(LSTM(32, return_sequences = True, stateful = True,
batch_input_shape = (batch_size, timesteps, data_dim)))
model.add(LSTM(32, return_sequences = True, stateful = True))
model.add(LSTM(32, stateful = True))
model.add(Dense(1, activation = 'relu'))
#Compile.
model.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics = ['accuracy'])
model.summary()
#Fit.
history = model.fit(data[train], label[train], epochs = iteraciones, verbose = 0)
#Eval.
scores = model.evaluate(data[test], label[test], verbose = 0)
#Save.
cvshistory.append(history)
cvscores.append(scores[1] * 100)
Shape:
(303, 14)
summary:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_19 (LSTM) (32, 13, 32) 5888
_________________________________________________________________
lstm_20 (LSTM) (32, 13, 32) 8320
_________________________________________________________________
lstm_21 (LSTM) (32, 32) 8320
_________________________________________________________________
dense_171 (Dense) (32, 1) 33
=================================================================
Total params: 22,561
Trainable params: 22,561
Non-trainable params: 0
_________________________________________________________________
The error output tells me the following:
---> 45 history = model.fit(data[train], label[train], epochs = iteraciones, verbose = 0)
ValueError: Error when checking input: expected lstm_19_input to have 3 dimensions, but got array with shape (226, 13)