Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
0 votes
2 views
in Data Science by (17.6k points)

I'm surely missing something simple here. Trying to merge two dataframes in pandas that have mostly the same column names, but the right dataframe has some columns that the left doesn't have, and vice versa.

>df_may

  id  quantity  attr_1  attr_2

0  1        20       0       1

1  2        23       1       1

2  3        19       1       1

3  4        19       0       0

>df_jun

  id  quantity  attr_1  attr_3

0  5         8       1       0

1  6        13       0       1

2  7        20       1       1

3  8        25       1       1

I've tried joining with an outer join:

mayjundf = pd.DataFrame.merge(df_may, df_jun, how="outer")

But that yields:

Left data columns not unique: Index([....

I've also specified a single column to join on (on = "id", e.g.), but that duplicates all columns except "id" like attr_1_x, attr_1_y, which is not ideal. I've also passed the entire list of columns (there are many) to "on":

mayjundf = pd.DataFrame.merge(df_may, df_jun, how="outer", on=list(df_may.columns.values))

Which yields:

ValueError: Buffer has wrong number of dimensions (expected 1, got 2)

What am I missing? I'd like to get a df with all rows appended, and attr_1, attr_2, attr_3 populated where possible, NaN where they don't show up. This seems like a pretty typical workflow for data munging, but I'm stuck.

Thanks in advance.

1 Answer

0 votes
by (41.4k points)

Use concat to merge two data frames with different columns:

pd.concat([df,df1], axis=0, ignore_index=True)

This will give the output:

   attr_1  attr_2  attr_3  id  quantity

0       0       1     NaN   1        20

1       1       1     NaN   2        23

2       1       1     NaN   3        19

3       0       0     NaN   4        19

4       1     NaN       0   5         8

5       0     NaN       1   6        13

6       1     NaN       1   7        20

7       1     NaN       1   8        25

If you wish to learn more about Data Science, then go through this Data Science tutorial for more insights.

31k questions

32.8k answers

501 comments

693 users

Browse Categories

...