>>> from sklearn.linear_model import LogisticRegression
>>> clf = LogisticRegression(random_state=0, solver='lbfgs',
... multi_class='multinomial').fit(X, y)
>>> clf.predict(X[:2, :])
array([0, 0])
>>> clf.predict_proba(X[:2, :])
array([[9.8...e-01, 1.8...e-02, 1.4...e-08],
[9.7...e-01, 2.8...e-02, ...e-08]])
>>> clf.score(X, y)
0.97…
print(clf.coef_)
# those values, however, will show that
# the second parameter
# is more influential
print(np.std(X, 0)*m.coef_)
m.fit(X / np.std(X, 0), y)
print(m.coef_)