Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
0 votes
3 views
in BI by (11.1k points)

I am using Power Bi and I want to pull the data points and change the data filter in and out,Here how can I add numbers to chart points For example

Current Chart

This is the current chart and what I want is look like this

Desired Chart

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D


def radar_factory(num_vars, frame='circle'):
    """Create a radar chart with `num_vars` axes.

    This function creates a RadarAxes projection and registers it.

    Parameters
    ----------
    num_vars : int
        Number of variables for radar chart.
    frame : {'circle' | 'polygon'}
        Shape of frame surrounding axes.

    """
    # calculate evenly-spaced axis angles
    theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)

    class RadarAxes(PolarAxes):

        name = 'radar'

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            # rotate plot such that the first axis is at the top
            self.set_theta_zero_location('N')

        def fill(self, *args, closed=True, **kwargs):
            """Override fill so that line is closed by default"""
            return super().fill(closed=closed, *args, **kwargs)

        def plot(self, *args, **kwargs):
            """Override plot so that line is closed by default"""
            lines = super().plot(19, **kwargs)
            for line in lines:
                self._close_line(line)

        def _close_line(self, line):
            x, y = line.get_data()
            # FIXME: markers at x[0], y[0] get doubled-up
            if x[0] != x[-1]:
                x = np.concatenate((x, [x[0]]))
                y = np.concatenate((y, [y[0]]))
                line.set_data(x, y)

        def set_varlabels(self, labels):
            self.set_thetagrids(np.degrees(theta), labels)

        def _gen_axes_patch(self):
            # The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
            # in axes coordinates.
            if frame == 'circle':
                return Circle((0.5, 0.5), 0.5)
            elif frame == 'polygon':
                return RegularPolygon((0.5, 0.5), num_vars,
                                      radius=0.5, edgecolor="k")
            else:
                raise ValueError("unknown value for 'frame': %s" % frame)

        def draw(self, renderer):
            """ Draw. If frame is polygon, make gridlines polygon-shaped """
            if frame == 'polygon':
                gridlines = self.yaxis.get_gridlines()
                for gl in gridlines:
                    gl.get_path()._interpolation_steps = num_vars
            super().draw(renderer)


        def _gen_axes_spines(self):
            if frame == 'circle':
                return super()._gen_axes_spines()
            elif frame == 'polygon':
                # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
                spine = Spine(axes=self,
                              spine_type='circle',
                              path=Path.unit_regular_polygon(num_vars))
                # unit_regular_polygon gives a polygon of radius 1 centered at
                # (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
                # 0.5) in axes coordinates.
                spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
                                    + self.transAxes)


                return {'polar': spine}
            else:
                raise ValueError("unknown value for 'frame': %s" % frame)

    register_projection(RadarAxes)
    return theta

disease_avg = round(dataset["disease_avg"].mean())
stress_vvg = round(dataset["Stress_Avg"].mean())
Nutrition_Avg = round(dataset["Nutrition_Avg"].mean())
Movement_avg = round(dataset["Movement_avg"].mean())
fitness_avg = round(dataset["fitness_avg"].mean())


data = [['Disease Risk', 'Stress', 'Nutrition', 'Movement Quality', 'Fitness'],
        ('Basecase', [[disease_avg, stress_vvg , Nutrition_Avg, Movement_avg, fitness_avg]])]


#('Basecase', [[dataset["disease_avg"].mean(), dataset["Stress_Avg"].mean() , dataset["Nutrition_Avg"].mean(),dataset["Movement_avg"].mean(), dataset["fitness_avg"].mean()]])]

cat = ['Disease Risk', 'Stress', 'Nutrition', 'Movement Quality', 'Fitness']
values = [dataset["disease_avg"].mean(), dataset["Stress_Avg"].mean(), dataset["Nutrition_Avg"].mean(), dataset["Movement_avg"].mean(), dataset["fitness_avg"].mean()]

N = len(data[0])
theta = radar_factory(N, frame='polygon')

spoke_labels = data.pop(0)
title, case_data = data[0]

fig, ax = plt.subplots(figsize=(4, 4), subplot_kw=dict(projection='radar'))
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)

ax.set_rgrids([5, 10, 15, 20])
#ax.set_title(title,  position=(0.5, 1.1), ha='center')

for d in case_data:
    line = ax.plot(theta, d)
    ax.fill(theta, d,color='#8bbe3f', alpha=0.35)  
ax.set_varlabels(spoke_labels)

plt.show()

I have tried but failed to do that so 

1 Answer

0 votes
by (22.5k points)

Use the following DAX function

for d in case_data:
    line = ax.plot(theta, d)
    ax.fill(theta, d, color='#8bbe3f', alpha=0.35)
    for ti, di in zip(theta, d):
        ax.text(ti, di+1, di, color='dodgerblue', ha='center', va='center')
    ax.scatter(theta, d, color='crimson', s=10)
If u want to learn the tool in-depth, then come to us and sign up for this Power BI Certification     

Related questions

0 votes
1 answer
asked Mar 4, 2021 in BI by Chris (11.1k points)
0 votes
1 answer
asked Mar 4, 2021 in BI by Chris (11.1k points)
0 votes
1 answer
asked Jan 11, 2021 in BI by Chris (11.1k points)
0 votes
1 answer

31k questions

32.8k answers

501 comments

693 users

Browse Categories

...