All Courses
×

Data Science Master's Program

4,267 Ratings

Ranked #1 Data Science Program by India TV

Intellipaat’s online Master's in Data Science program lets you gain proficiency in data science. You will work on real-world projects in data science with R, deep learning, power BI, SQL, MongoDB, and more. In this program, you will cover 10 courses and 30 industry-based projects with 1 capstone project. Enroll now and pursue your MS in data science online.

course intro video
Course Introduction

Watch

Course Preview

Key Highlights

232 Hrs Instructor Led Training
104 Hrs Self-paced Videos
253 Hrs Project & Exercises
Certification
Job Assistance
Flexible Schedule
Lifetime Free Upgrade
Mentor Support
Trustpilot
sitejabber 1
Mouthshut

Online Data Science Master's Program Overview

List of Courses Included

Online Instructor-led Courses:

  • Python for Data Science
  • Machine Learning
  • Artificial Intelligence and Deep Learning with TensorFlow
  • Power BI

Self-paced Courses:

  • Data Science with R
  • Advanced Excel
  • MongoDB
  • MS-SQL

In this data science masters program, you will learn about

  • MapReduce and HDFS
  • Real-time analytics with Spark
  • Data scientist roles and responsibilities
  • Prediction and analysis through clustering
  • Deploying the recommender system
  • Linear and logistic regression
  • Making sense of NoSQL data
  • Deep learning model in AI

There are no prerequisites for taking this data science graduate program.

  • Data scientist is the best job of the 21st century – Harvard Business Review
  • Global big data market to reach $122 billion in revenue by 2025 – Frost & Sullivan

This best Data Science Master’s program has been created keeping in mind the needs of the industry when it comes to the domain of data science. Today’s data scientists need to have a diverse set of skills which include working with huge volumes of data, parsing that data, and converting it into a format that is easily understandable, using which business insights can be derived. This training program lets you play multiple roles in the big data and data science domains and get hired for top-notch salaries.

View More

Talk To Us

We are happy to help you 24/7

Skills to Master

Data Science with R

Python for Data Science

Machine Learning

Artificial Intelligence

Spark

Power BI

Data Blending

Advanced Excel

MongoDB

T-SQL

Database objects

MS-SQL

View More

Tools to Master

R 1 python jupyter 1 numpy Scipy hadoop spark 1 tensorflow Power BI 1 excel mongodb 1 hive mapreduce Oozie sqoop apache pig pyspark 1 SQL SparkSQL

Course Fees

Self Paced Training

  • 104 Hrs e-learning videos
  • Flexible Schedule
  • Lifetime Free Upgrade

₹40,014

Online Classroom Preferred

Weekend (Sat-Sun)

21 Dec 2024 08:00 PM - 11:00 PM
Weekday (Tue-Fri)

24 Dec 2024 07:00 AM - 09:00 AM
Weekend (Sat-Sun)

29 Dec 2024 08:00 PM - 11:00 PM
Weekend (Sat-Sun)

04 Jan 2025 08:00 PM - 11:00 PM
₹ 85,443 ₹62,643 10% OFF Expires in

EMI Starts at

₹5,000

We partnered with financing companies to provide very competitive finance options at 0% interest rate

Financing Partners

EMI Partner

The credit facility is provided by a third-party financing company and any arrangement with such financing companies is outside.

Corporate Training

  • Customized Learning
  • Enterprise Grade Learning Management System (LMS)
  • 24x7 Support
  • Enterprise Grade Reporting

Contact Us

Master's in Data Science Course Curriculum

Live Course Self-Paced

Python for Data Science

39 Hours 14 Module

Preview

Module 01 – Introduction to Data Science using Python
Module 02 – Python basic constructs
Module 03 – Maths for DS-Statistics and Probability
Module 04 – OOPs in Python (Self-paced)
Module 05 – NumPy for mathematical computing
Module 06 – SciPy for scientific computing (Self-paced)
Module 07 – Data manipulation
Module 08 – Data visualization with Matplotlib
Module 09 – Machine Learning using Python
Module 10 – Supervised learning
Module 11 – Unsupervised Learning
Module 12 – Python integration with Spark (Self-paced)
Module 13 – Dimensionality Reduction (Self-paced)
Module 14 – Time Series Forecasting (Self-paced)

Download Brochure

Tools covered

python jupyter 1 numpy Scipy

Module 01 – Introduction to Machine Learning
Module 02 – Supervised Learning and Linear Regression
Module 03 – Classification and Logistic Regression
Module 04 – Decision Tree and Random Forest
Module 05 – Naïve Bayes and Support Vector Machine (Self-paced)
Module 06 – Unsupervised Learning
Module 07 – Natural Language Processing and Text Mining (Self-paced)
Module 08 – Introduction to Deep Learning
Module 09 – Time Series Analysis (self-paced)

Download Brochure

Tools covered

python jupyter 1

Module 01 – Introduction to Deep Learning and Neural Networks
Module 02 – Multi-layered Neural Networks
Module 03 – Artificial Neural Networks and Various Methods
Module 04 – Deep Learning Libraries
Module 05 – Keras API
Module 06 – TFLearn API for TensorFlow
Module 07 – DNNS (deep neural networks)
Module 08 – CNNS (convolutional neural networks)
Module 09 – RNNS (recurrent neural networks)
Module 10 – GPU in deep learning
Module 11 – Autoencoders and restricted boltzmann machine (rbm)
Module 12 – Deep learning applications
Module 13 – Chatbots

Download Brochure

Tools covered

tensorflow

Module 01 – Introduction to Power BI
Module 02 – Data Extraction
Module 03 – Data Transformation – Shaping and Combining Data
Module 04 – Data Modelling and DAX
Module 05 – Data Visualization with analytics
Module 06 – Power BI Service (Cloud), Q&A, and Data Insights
Module 07 – Power BI Settings, Administration & Direct Connectivity
Module 08 – Embedded Power BI with API & Power BI
Module 09 – Power BI Advance & Power BI Premium

Download Brochure

Tools covered

Power BI 1

Module 01 – Introduction to Data Science with R
Module 02 – Data Exploration
Module 03 – Data Manipulation
Module 04 – Data Visualization
Module 05 – Introduction to Statistics
Module 06 – Machine Learning
Module 07 – Logistic Regression
Module 08 – Decision Trees and Random Forest
Module 09 – Unsupervised Learning
Module 10 – Association Rule Mining and Recommendation Engines

Self-paced Course Content

Module 11 – Introduction to Artificial Intelligence
Module 12 – Time Series Analysis
Module 13 – Support Vector Machine (SVM)
Module 14 – Naïve Bayes
Module 15 – Text Mining

Download Brochure

Tools covered

R

Module 01 – Entering Data
Module 02 – Referencing in Formulas
Module 03 – Name Range
Module 04 – Understanding Logical Functions
Module 05 – Getting started with Conditional Formatting
Module 06 – Advanced-level Validation
Module 07 – Important Formulas in Excel
Module 08 – Working with Dynamic table
Module 09 – Data Sorting
Module 10 – Data Filtering
Module 11 – Chart Creation
Module 12 – Various Techniques of Charting
Module 13 – Pivot Tables in Excel
Module 14 – Ensuring Data and File Security
Module 15 – Getting started with VBA Macros
Module 16 – Ranges and Worksheet in VBA
Module 17 – IF condition
Module 18 – Loops in VBA
Module 19 – Debugging in VBA
Module 20 – Dashboard Visualization
Module 21 – Principles of Charting
Module 22 – Getting started with Pivot Tables
Module 23 – Statistics with Excel

Download Brochure

Tools covered

excel

Module 01 – Introduction to NoSQL and MongoDB
Module 02 – MongoDB Installation
Module 03 – Importance of NoSQL
Module 04 – CRUD Operations
Module 05 – Data Modeling and Schema Design
Module 06 – Data Management and Administration
Module 07 – Data Indexing and Aggregation
Module 08 – MongoDB Security
Module 09 – Working with Unstructured Data

Download Brochure

Tools covered

mongodb 1

Module 01 – Introduction to SQL
Module 02 – Database Normalization and Entity Relationship Model
Module 03 – SQL Operators
Module 04 – Working with SQL: Join, Tables, and Variables
Module 05 – Deep Dive into SQL Functions
Module 06 – Working with Subqueries
Module 07 – SQL Views, Functions, and Stored Procedures
Module 08 – Deep Dive into User-defined Functions
Module 09 – SQL Optimization and Performance
Module 10 – Advanced Topics
Module 11 – Managing Database Concurrency
Module 12 – Programming Databases Using Transact-SQL
Module 13 – Microsoft Courses: Study Material

Download Brochure

Tools covered

SQL
View More

Career Services

Career Services
guaranteed
Assured Interviews
job portal
Exclusive access to Intellipaat Job portal
Mock Interview Preparation
1 on 1 Career Mentoring Sessions
resume 1
Career Oriented Sessions
linkedin 1
Resume & LinkedIn Profile Building
View More
certificateimage Click to Zoom

Master's in Data Science Certificates

This Data Scientist master’s program is created and delivered to help you land top jobs in the world’s best organizations. The training includes real-world projects and case studies after the completion of which, you will receive industry-recognized certification from Intellipaat.

This training program aims to prepare you for the following certification exams:

  • Spark component of Cloudera Spark and Developer Certification (CCA175)
  • C100DEV: MongoDB Certified Developer Associate Exam
  • Microsoft 70-761 SQL Server Certification Exam
  • Microsoft 70-762 SQL Server Certification Exam
  • Deep Learning with TensorFlow
  • Python for Data Science

Land Your Dream Job Like Our Alumni

Hiring Partners

Online Data Science Master’s Program FAQs

What Is Intellipaat’s online Data Science Master's course and how is it different from individual courses?

The Master’s in Data Science India program is a structured learning path specially designed by industry experts which ensures that you transform into a data science expert. Individual courses at Intellipaat focus on one or two specializations. However, if you have to master data science, then this program is for you.

Intellipaat has been serving data science enthusiasts from every corner of the city. You can be residing in any country, be it India, Canada, USA, Philippines, Australia, or European countries like the Netherlands, Germany, UK, or anywhere. You can have full access to our best online data science Master’s course sitting at home or office.

Three technical 1:1 sessions per month will be allowed.

View More