All Courses
×

Apache Spark and Scala Certification Training in Seattle

4,629 Ratings

Enroll in Intellipaat’s Spark training in Seattle. Industry experts have designed this Apache Spark course in Seattle so that you can receive end-to-end training on Spark shell arguments, Spark MLlib, Spark SQL, etc. and real-time projects that will help you clear the Cloudera certification.

course intro video

Watch

Course Preview

Key Highlights

24 Hrs Instructor Led Training
22 Hrs Self-paced Videos
60 Hrs Project & Exercises
Certification
Job Assistance
Flexible Schedule
Lifetime Free Upgrade
Mentor Support
Trustpilot 3109
sitejabber 1493
mouthshut 24542

Apache Spark and Scala Training in Seattle Overview

What modules will be covered in our Apache Spark training in Seattle?

  • Scala operations
  • Scala–Java interoperability
  • Apache Spark and Hadoop differences
  • Spark Streaming
  • Using Apache Spark on clusters
  • Scala programming and its implementation
  • Implementing Spark algorithms
  • RDD and its operation
  • Implementing Java, Python, and Scala to write Spark applications
  • Scala classes
  • Pattern matching

If you have prior experience in the following professional roles, then you are suitable to apply for this Apache Spark and Scala certification:

  • Software Engineer
  • Data Engineer
  • Data Scientist
  • ETL Developer
  • Analytics professional

You can also register if you are a graduate with an interest in Big Data.

No. Prior experience in SQL, query language, and databases will be an added advantage during the learning process. Otherwise, Intellipaat does not impose such prerequisites for this Spark course.

These are the details of the Apache Spark exam in Seattle:
 

Certification Exam Cost ($) Exam Duration
CCA Spark and Hadoop Developer examination (CCA175) $295 USD 120 minutes
  • Apache Spark is one of the most-adopted Big Data Analytics and Machine Learning technologies among enterprises today – Forbes
  • 550+ jobs are listed for Apache Spark and Scala experts in Seattle, WA – LinkedIn
  • The annual average pay of Apache Spark and Scala experts in Seattle is US$108,000 – PayScale
View More

Talk To Us

We are happy to help you 24/7

Spark and Kafka are powering today's modern data apps - Forbes
Spark can be 100x faster than Hadoop for large scale data processing - Databricks

Career Transition

57% Average Salary Hike

$1,28,000 Highest Salary

12000+ Career Transitions

300+ Hiring Partners

Career Transition Handbook

*Past record is no guarantee of future job prospects

Skills Covered

Hadoop

Scala

Python

Java

MLlib

K-means clustering

Kafka

Flume

Hive

Spark SQL

Maven

Scala–Java

Cloudera

ZooKeeper

View More

Course Fees

Self Paced Training

  • 22 Hrs e-learning videos
  • Flexible Schedule
  • Lifetime Free Upgrade

$264

Corporate Training

  • Customized Learning
  • Enterprise Grade Learning Management System (LMS)
  • 24x7 Support
  • Enterprise Grade Reporting

Contact Us

Spark and Scala Course Curriculum

Live Course

Scala Course Content

Module 01 - Introduction to Scala

Preview

1.1 Introducing Scala
1.2 Deployment of Scala for Big Data applications and Apache Spark analytics
1.3 Scala REPL, lazy values, and control structures in Scala
1.4 Directed Acyclic Graph (DAG)
1.5 First Spark application using SBT/Eclipse
1.6 Spark Web UI
1.7 Spark in the Hadoop ecosystem.

Download Brochure

2.1 The importance of Scala
2.2 The concept of REPL (Read Evaluate Print Loop)
2.3 Deep dive into Scala pattern matching
2.4 Type interface, higher-order function, currying, traits, application space and Scala for data analysis

Download Brochure

3.1 Learning about the Scala Interpreter
3.2 Static object timer in Scala and testing string equality in Scala
3.3 Implicit classes in Scala
3.4 The concept of currying in Scala
3.5 Various classes in Scala

Download Brochure

4.1 Learning about the Classes concept
4.2 Understanding the constructor overloading
4.3 Various abstract classes
4.4 The hierarchy types in Scala
4.5 The concept of object equality
4.6 The val and var methods in Scala

Download Brochure

5.1 Understanding sealed traits, wild, constructor, tuple, variable pattern, and constant pattern

Download Brochure

6.1 Understanding traits in Scala
6.2 The advantages of traits
6.3 Linearization of traits
6.4 The Java equivalent
6.5 Avoiding of boilerplate code

Download Brochure

7.1 Implementation of traits in Scala and Java
7.2 Handling of multiple traits extending

Download Brochure

8.1 Introduction to Scala collections
8.2 Classification of collections
8.3 The difference between iterator and iterable in Scala
8.4 Example of list sequence in Scala

Download Brochure

9.1 The two types of collections in Scala
9.2 Mutable and immutable collections
9.3 Understanding lists and arrays in Scala
9.4 The list buffer and array buffer
9.6 Queue in Scala
9.7 Double-ended queue Deque, Stacks, Sets, Maps, and Tuples in Scala

Download Brochure

10.1 Introduction to Scala packages and imports
10.2 The selective imports
10.3 The Scala test classes
10.4 Introduction to JUnit test class
10.5 JUnit interface via JUnit 3 suite for Scala test
10.6 Packaging of Scala applications in the directory structure
10.7 Examples of Spark Split and Spark Scala

Download Brochure

Spark Course Content

11.1 Introduction to Spark
11.2 Spark overcomes the drawbacks of working on MapReduce
11.3 Understanding in-memory MapReduce
11.4 Interactive operations on MapReduce
11.5 Spark stack, fine vs. coarse-grained update,, Spark Hadoop YARN, HDFS Revision, and YARN Revision
11.6 The overview of Spark and how it is better than Hadoop
11.7 Deploying Spark without Hadoop
11.8 Spark history server and Cloudera distribution

Download Brochure

12.1 Spark installation guide
12.2 Spark configuration
12.3 Memory management
12.4 Executor memory vs. driver memory
12.5 Working with Spark Shell
12.6 The concept of resilient distributed datasets (RDD)
12.7 Learning to do functional programming in Spark
12.8 The architecture of Spark

Download Brochure

13.1 Spark RDD
13.2 Creating RDDs
13.3 RDD partitioning
13.4 Operations and transformation in RDD
13.5 Deep dive into Spark RDDs
13.6 The RDD general operations
13.7 Read-only partitioned collection of records
13.8 Using the concept of RDD for faster and efficient data processing
13.9 RDD action for the collect, count, collects map, save-as-text-files, and pair RDD functions

Download Brochure

14.1 Understanding the concept of key-value pair in RDDs
14.2 Learning how Spark makes MapReduce operations faster
14.3 Various operations of RDD
14.4 MapReduce interactive operations
14.5 Fine and coarse-grained update
14.6 Spark stack

Download Brochure

15.1 Comparing the Spark applications with Spark Shell
15.2 Creating a Spark application using Scala or Java
15.3 Deploying a Spark application
15.4 Scala built application
15.5 Creation of the mutable list, set and set operations, list, tuple, and concatenating list
15.6 Creating an application using SBT
15.7 Deploying an application using Maven
15.8 The web user interface of Spark application
15.9 A real-world example of Spark
15.10 Configuring of Spark

Download Brochure

16.1 Learning about Spark parallel processing
16.2 Deploying on a cluster
16.3 Introduction to Spark partitions
16.4 File-based partitioning of RDDs
16.5 Understanding of HDFS and data locality
16.6 Mastering the technique of parallel operations
16.7 Comparing repartition and coalesce
16.8 RDD actions

Download Brochure

17.1 The execution flow in Spark
17.2 Understanding the RDD persistence overview
17.3 Spark execution flow, and Spark terminology
17.4 Distribution shared memory vs. RDD
17.5 RDD limitations
17.6 Spark shell arguments
17.7 Distributed persistence
17.8 RDD lineage
17.9 Key-value pair for sorting implicit conversions like CountByKey, ReduceByKey, SortByKey, and AggregateByKey

Download Brochure

18.1 Introduction to Machine Learning
18.2 Types of Machine Learning
18.3 Introduction to MLlib
18.4 Various ML algorithms supported by MLlib
18.5 Linear regression, logistic regression, decision tree, random forest, and K-means clustering techniques

Hands-on Exercise: 
1. Building a Recommendation Engine

Download Brochure

19.1 Why Kafka and what is Kafka?
19.2 Kafka architecture
19.3 Kafka workflow
19.4 Configuring Kafka cluster
19.5 Operations
19.6 Kafka monitoring tools
19.7 Integrating Apache Flume and Apache Kafka

Hands-on Exercise: 
1. Configuring Single Node Single Broker Cluster
2. Configuring Single Node Multi Broker Cluster
3. Producing and consuming messages
4. Integrating Apache Flume and Apache Kafka

Download Brochure

20.1 Introduction to Spark Streaming
20.2 Features of Spark Streaming
20.3 Spark Streaming workflow
20.4 Initializing StreamingContext, discretized Streams (DStreams), input DStreams and Receivers
20.5 Transformations on DStreams, output operations on DStreams, windowed operators and why it is useful
20.6 Important windowed operators and stateful operators

Hands-on Exercise: 
1. Twitter Sentiment analysis
2. Streaming using Netcat server
3. Kafka–Spark streaming
4. Spark–Flume streaming

Download Brochure

21.1 Introduction to various variables in Spark like shared variables and broadcast variables
21.2 Learning about accumulators
21.3 The common performance issues
21.4 Troubleshooting the performance problems

Download Brochure

22.1 Learning about Spark SQL
22.2 The context of SQL in Spark for providing structured data processing
22.3 JSON support in Spark SQL
22.4 Working with XML data
22.5 Parquet files
22.6 Creating Hive context
22.7 Writing data frame to Hive
22.8 Reading JDBC files
22.9 Understanding the data frames in Spark
22.10 Creating Data Frames
22.11 Manual inferring of schema
22.12 Working with CSV files
22.13 Reading JDBC tables
22.14 Data frame to JDBC
22.15 User-defined functions in Spark SQL
22.16 Shared variables and accumulators
22.17 Learning to query and transform data in data frames
22.18 Data frame provides the benefit of both Spark RDD and Spark SQL
22.19 Deploying Hive on Spark as the execution engine

Download Brochure

23.1 Learning about the scheduling and partitioning in Spark
23.2 Hash partition
23.3 Range partition
23.4 Scheduling within and around applications
23.5 Static partitioning, dynamic sharing, and fair scheduling
23.6 Map partition with index, the Zip, and GroupByKey
23.7 Spark master high availability, standby masters with ZooKeeper, single-node recovery with the local file system and high order functions

Download Brochure
View More

Spark and Scala Projects

Career Services

Career Services
guaranteed
Assured Interviews
job portal
Exclusive access to Intellipaat Job portal
Mock Interview Preparation
1 on 1 Career Mentoring Sessions
resume 1
Career Oriented Sessions
linkedin 1
Resume & LinkedIn Profile Building
View More

Apache Spark Certification in Seattle

certificateimage Click to Zoom

This Spark Certification course is designed for clearing the Apache Spark component of the Cloudera Spark and Hadoop Developer Certification (CCA175) exam. Check our Hadoop training course for gaining proficiency in the Hadoop component of the CCA175 exam. The complete course is created by industry experts for professionals to get top jobs in the best organizations. The entire training includes real-world projects and case studies that are highly valuable.

Upon the completion of the Scala training in Seattle, you will have quizzes that will help you prepare for the CCA175 certification exam and score top marks.

The Intellipaat Scala certification is awarded upon successfully completing the project work and after its review by experts. The Intellipaat certification is recognized in some of the biggest companies like Cisco, Cognizant, Mu Sigma, TCS, Genpact, Hexaware, Sony and Ericsson, among others.

Apache Spark and Scala Certification Training Reviews in Seattle

( 4,629 )

Land Your Dream Job Like Our Alumni

FAQs on Apache Spark Online Training

Why should I learn Apache Spark Training in Seattle from Intellipaat?

Intellipaat is the pioneer in Hadoop training in the US. So, it pays to be with the market leader like Intellipaat to learn Spark and Scala and get the best jobs in top MNCs for top salaries. The Intellipaat’s Apache Spark training is the most comprehensive course that includes real-time projects and assignments which are designed by industry experts. The entire course content is fully aligned towards clearing the exam for the Apache Spark component of the Cloudera Spark and Hadoop Developer Certification (CCA175) exam.

Intellipaat offers lifetime access to videos, course materials, 24/7 support and course material upgrades to the latest version at no extra fee. For Hadoop and Spark training, you get the Intellipaat Proprietary Virtual Machine for lifetime and free cloud access for 6 months for performing training exercises. Hence, it is clearly a one-time investment.

Intellipaat offers query resolution, and you can raise a ticket with the dedicated support team at any time. You can avail yourself of email support for all your queries. We can also arrange one-on-one sessions with our support team If your query does not get resolved through email. However, 1:1 session support is given for 6 months from the start date of your course.

Intellipaat provides placement assistance to all learners who have completed the training and moved to the placement pool after clearing the PRT (Placement Readiness Test). More than 500+ top MNCs and startups hire Intellipaat learners. Our alumni work with Google, Microsoft, Amazon, Sony, Ericsson, TCS, Mu Sigma, etc.

No, our job assistance is aimed at helping you land your dream job. It offers a potential opportunity for you to explore various competitive openings in the corporate world and find a well-paid job, matching your profile. The final hiring decision will always be based on your performance in the interview and the requirements of the recruiter.

View More