Intellipaat Big Data Course in Singapore lets you master Big Data Hadoop and Spark online to get ready for the Cloudera CCA Spark and Hadoop Developer Certification (CCA175), as well as master Hadoop administration with 14 real-time industry-oriented case-study projects. Get the best Hadoop training in Singapore from certified mentors as well as earn IBM Big Data Certificate.
Intellipaat is a renowned name in the domain of online training widely popular for providing the most industry-recognized and career-oriented Big Data Hadoop training in Singapore. This master’s program trains learners in four wide domains of Hadoop, viz., Developer, Admin, Analyst and Testing. Starting from MapReduce and Spark to Oozie and Flume, all the significant topics will be covered in this course. At the end of the training course, the learners will be carrying out a project work upon the completion of which they will achieve IBM certification.
There is no prerequisite to take up this Big Data training and to master Hadoop. But basics of UNIX, SQL and Java would be beneficial. At Intellipaat, we provide the complimentary Linux and Java courses with our Big Data certification training to brush-up the required skills so that you are good on your Hadoop learning path.
Singapore is known as the most technology-ready nation in the entire Southeast Asia. This nation is widely known for having the most progressive economic and trade market. Some of the world’s top companies like Facebook, Netflix, Twitter, etc. are investing massively in this market. As Big Data is considered as the recent advancement in the technology domain, the companies are increasingly using platforms like Hadoop to perform analytical operations. Hence, demand for Hadoop professionals is on the rise in this nation.
Being one of the most lucrative business markets, it is attracting investors from across the globe to thrive in this market. This emerging market has made the companies use Big Data Analytics at large scale which has caused the popularity of Hadoop to go high in this market. Therefore, candidates who wish to build their careers as Big Data Analysts should learn Hadoop.
Big Data Analytics does not remain inside the boundaries of IT companies alone anymore and spans across from manufacturing to service sectors nowadays. This growing use of Big Data has led the companies to adopt Hadoop, and hence learning it would help you grab top jobs in no time.
Big Data Hadoop online training course equips learners with all the essential skills required to become a successful Big Data Analyst. As part of this training, the learners will be carrying-out 14 real-time projects based on Hadoop components. Also, this training course helps you score higher in CCA175 and CCAH exams.
Talk to Us
1.1 The architecture of Hadoop cluster
1.2 What is High Availability and Federation?
1.3 How to setup a production cluster?
1.4 Various shell commands in Hadoop
1.5 Understanding configuration files in Hadoop
1.6 Installing a single node cluster with Cloudera Manager
1.7 Understanding Spark, Scala, Sqoop, Pig, and Flume
2.1 Introducing Big Data and Hadoop
2.2 What is Big Data and where does Hadoop fit in?
2.3 Two important Hadoop ecosystem components, namely, MapReduce and HDFS
2.4 In-depth Hadoop Distributed File System – Replications, Block Size, Secondary Name node, High Availability and in-depth YARN – resource manager and node manager
Hands-on Exercise:
1. HDFS working mechanism
2. Data replication process
3. How to determine the size of the block?
4. Understanding a data node and name node
3.1 Learning the working mechanism of MapReduce
3.2 Understanding the mapping and reducing stages in MR
3.3 Various terminologies in MR like Input Format, Output Format, Partitioners, Combiners, Shuffle, and Sort
Hands-on Exercise:
1. How to write a WordCount program in MapReduce?
2. How to write a Custom Partitioner?
3. What is a MapReduce Combiner?
4. How to run a job in a local job runner
5. Deploying a unit test
6. What is a map side join and reduce side join?
7. What is a tool runner?
8. How to use counters, dataset joining with map side, and reduce side joins?
4.1 Introducing Hadoop Hive
4.2 Detailed architecture of Hive
4.3 Comparing Hive with Pig and RDBMS
4.4 Working with Hive Query Language
4.5 Creation of a database, table, group by and other clauses
4.6 Various types of Hive tables, HCatalog
4.7 Storing the Hive Results, Hive partitioning, and Buckets
Hands-on Exercise:
1. Database creation in Hive
2. Dropping a database
3. Hive table creation
4. How to change the database?
5. Data loading
6. Dropping and altering table
7. Pulling data by writing Hive queries with filter conditions
8. Table partitioning in Hive
9. What is a group by clause?
5.1 Indexing in Hive
5.2 The ap Side Join in Hive
5.3 Working with complex data types
5.4 The Hive user-defined functions
5.5 Introduction to Impala
5.6 Comparing Hive with Impala
5.7 The detailed architecture of Impala
Hands-on Exercise:Â
1. How to work with Hive queries?
2. The process of joining the table and writing indexes
3. External table and sequence table deployment
4. Data storage in a different table
6.1 Apache Pig introduction and its various features
6.2 Various data types and schema in Hive
6.3 The available functions in Pig, Hive Bags, Tuples, and Fields
Hands-on Exercise:Â
1. Working with Pig in MapReduce and local mode
2. Loading of data
3. Limiting data to 4 rows
4. Storing the data into files and working with Group By, Filter By, Distinct, Cross, Split in Hive
7.1 Apache Sqoop introduction
7.2 Importing and exporting data
7.3 Performance improvement with Sqoop
7.4 Sqoop limitations
7.5 Introduction to Flume and understanding the architecture of Flume
7.6 What is HBase and the CAP theorem?
Hands-on Exercise:Â
1. Working with Flume to generate Sequence Number and consume it
2. Using the Flume Agent to consume the Twitter data
3. Using AVRO to create Hive Table
4. AVRO with Pig
5. Creating Table in HBase
6. Deploying Disable, Scan, and Enable Table
8.1 Using Scala for writing Apache Spark applications
8.2 Detailed study of Scala
8.3 The need for Scala
8.4 The concept of object-oriented programming
8.5 Executing the Scala code
8.6 Various classes in Scala like getters, setters, constructors, abstract, extending objects, overriding methods
8.7 The Java and Scala interoperability
8.8 The concept of functional programming and anonymous functions
8.9 Bobsrockets package and comparing the mutable and immutable collections
8.10 Scala REPL, Lazy Values, Control Structures in Scala, Directed Acyclic Graph (DAG), first Spark application using SBT/Eclipse, Spark Web UI, Spark in Hadoop ecosystem.
Hands-on Exercise:
1. Writing Spark application using Scala
2. Understanding the robustness of Scala for Spark real-time analytics operation
9.1 Detailed Apache Spark and its various features
9.2 Comparing with Hadoop
9.3 Various Spark components
9.4 Combining HDFS with Spark and Scalding
9.5 Introduction to Scala
9.6 Importance of Scala and RDD
Hands-on Exercise:Â
1. The Resilient Distributed Dataset (RDD) in Spark
2. How does it help to speed up Big Data processing?
10.1 Understanding the Spark RDD operations
10.2 Comparison of Spark with MapReduce
10.3 What is a Spark transformation?
10.4 Loading data in Spark
10.5 Types of RDD operations viz. transformation and action
10.6 What is a Key/Value pair?
Hands-on Exercise:Â
1. How to deploy RDD with HDFS?
2. Using the in-memory dataset
3. Using file for RDD
4. How to define the base RDD from an external file?
5. Deploying RDD via transformation
6. Using the Map and Reduce functions
7. Working on word count and count log severity
11.1 The detailed Spark SQL
11.2 The significance of SQL in Spark for working with structured data processing
11.3 Spark SQL JSON support
11.4 Working with XML data and parquet files
11.5 Creating Hive Context
11.6 Writing Data Frame to Hive
11.7 How to read a JDBC file?
11.8 Significance of a Spark data frame
11.9 How to create a data frame?
11.10 What is schema manual inferring?
11.11 Work with CSV files, JDBC table reading, data conversion from Data Frame to JDBC, Spark SQL user-defined functions, shared variable, and accumulators
11.12 How to query and transform data in Data Frames?
11.13 How data frame provides the benefits of both Spark RDD and Spark SQL?
11.14 Deploying Hive on Spark as the execution engine
Hands-on Exercise:
1. Data querying and transformation using Data Frames
2. Finding out the benefits of Data Frames over Spark SQL and Spark RDD
12.1 Introduction to Spark MLlib
12.2 Understanding various algorithms
12.3 What is Spark iterative algorithm?
12.4 Spark graph processing analysis
12.5 Introducing Machine Learning
12.6 K-Means clustering
12.7 Spark variables like shared and broadcast variables
12.8 What are accumulators?
12.9 Various ML algorithms supported by MLlib
12.10 Linear regression, logistic regression, decision tree, random forest, and K-means clustering techniques
Hands-on Exercise:Â
1. Building a recommendation engine
13.1 Why Kafka?
13.2 What is Kafka?
13.3 Kafka architecture
13.4 Kafka workflow
13.5 Configuring Kafka cluster
13.6 Basic operations
13.7 Kafka monitoring tools
13.8 Integrating Apache Flume and Apache Kafka
Hands-on Exercise:
1. Configuring Single Node Single Broker Cluster
2. Configuring Single Node Multi Broker Cluster
3. Producing and consuming messages
4. Integrating Apache Flume and Apache Kafka.
14.1 Introduction to Spark streaming
14.2 The architecture of Spark streaming
14.3 Working with the Spark streaming program
14.4 Processing data using Spark streaming
14.5 Requesting count and DStream
14.6 Multi-batch and sliding window operations
14.7 Working with advanced data sources
14.8 Features of Spark streaming
14.9 Spark Streaming workflow
14.10 Initializing StreamingContext
14.11 Discretized Streams (DStreams)
14.12 Input DStreams and Receivers
14.13 Transformations on DStreams
14.14 Output Operations on DStreams
14.15 Windowed operators and its uses
14.16 Important Windowed operators and Stateful operators
Hands-on Exercise:
1. Twitter Sentiment analysis
2. Streaming using Netcat server
3. Kafka-Spark streaming
4. Spark-Flume streaming
15.1 Create a 4-node Hadoop cluster setup
15.2 Running the MapReduce Jobs on the Hadoop cluster
15.3 Successfully running the MapReduce code
15.4 Working with the Cloudera Manager setup
Hands-on Exercise:
1. The method to build a multi-node Hadoop cluster using an Amazon EC2 instance
2. Working with the Cloudera Manager
16.1 Overview of Hadoop configuration
16.2 The importance of Hadoop configuration file
16.3 The various parameters and values of configuration
16.4 The HDFS parameters and MapReduce parameters
16.5 Setting up the Hadoop environment
16.6 The Include and Exclude configuration files
16.7 The administration and maintenance of name node, data node directory structures, and files
16.8 What is a File system image?
16.9 Understanding Edit log
Hands-on Exercise:
1. The process of performance tuning in MapReduce
17.1 Introduction to the checkpoint procedure, name node failure
17.2 How to ensure the recovery procedure, Safe Mode, Metadata and Data backup, various potential problems and solutions, what to look for and how to add and remove nodes
Hands-on Exercise:
1. How to go about ensuring the MapReduce File System Recovery for different scenarios
2. JMX monitoring of the Hadoop cluster
3. How to use the logs and stack traces for monitoring and troubleshooting
4. Using the Job Scheduler for scheduling jobs in the same cluster
5. Getting the MapReduce job submission flow
6. FIFO schedule
7. Getting to know the Fair Scheduler and its configuration
18.1 How ETL tools work in Big Data industry?
18.2 Introduction to ETL and data warehousing
18.3 Working with prominent use cases of Big Data in ETL industry
18.4 End-to-end ETL PoC showing Big Data integration with ETL tool
Hands-on Exercise:
1. Connecting to HDFS from ETL tool
2. Moving data from Local system to HDFS
3. Moving data from DBMS to HDFS,
4. Working with Hive with ETL Tool
5. Creating MapReduce job in ETL tool
19.1 Working towards the solution of the Hadoop project solution
19.2 Its problem statements and the possible solution outcomes
19.3 Preparing for the Cloudera certifications
19.4 Points to focus on scoring the highest marks
19.5 Tips for cracking Hadoop interview questions
Hands-on Exercise:
1. The project of a real-world high value Big Data Hadoop application
2. Getting the right solution based on the criteria set by the Intellipaat team
20.1 Importance of testing
20.2 Unit testing, Integration testing, Performance testing, Diagnostics, Nightly QA test, Benchmark and end-to-end tests, Functional testing, Release certification testing, Security testing, Scalability testing, Commissioning and Decommissioning of data nodes testing, Reliability testing, and Release testing
21.1 Understanding the Requirement
21.2 Preparation of the Testing Estimation
21.3 Test Cases, Test Data, Test Bed Creation, Test Execution, Defect Reporting, Defect Retest, Daily Status report delivery, Test completion, ETL testing at every stage (HDFS, Hive and HBase) while loading the input (logs, files, records, etc.) using Sqoop/Flume which includes but not limited to data verification, Reconciliation, User Authorization and Authentication testing (Groups, Users, Privileges, etc.), reporting defects to the development team or manager and driving them to closure
21.4 Consolidating all the defects and create defect reports
21.5 Validating new feature and issues in Core Hadoop
22.1 Report defects to the development team or manager and driving them to closure
22.2 Consolidate all the defects and create defect reports
22.3 Responsible for creating a testing framework called MRUnit for testing of MapReduce programs
23.1 Automation testing using the OOZIE
23.2 Data validation using the query surge tool
24.1 Test plan for HDFS upgrade
24.2 Test automation and result
25.1 Test, install and configure
Free Career Counselling
This training course is designed to help you clear the Cloudera Spark and Hadoop Developer Certification (CCA175) exams. The entire training course content is in line with these certification programs and helps you clear these certification exams with ease and get the best jobs in the top MNCs.
As part of this Big Data course in Singapore, you will be working on real-time projects and assignments that have immense implications in the real-world industry scenarios, thus helping you fast-track your career effortlessly.
At the end of this Big Data Hadoop training in Singapore, there will be quizzes that perfectly reflect the type of questions asked in the respective certification exams and help you score better.
Intellipaat Course Completion Certificate will be awarded upon the completion of the project work (after expert review) and upon scoring at least 60% marks in the quiz. Intellipaat certification is well recognized in top 80+ MNCs like Ericsson, Cisco, Cognizant, Sony, Mu Sigma, Saint-Gobain, Standard Chartered, TCS, Genpact, Hexaware, etc.
It is a known fact that the demand for Hadoop professionals far outstrips the supply. So, if you want to learn and make a career in Hadoop, then you need to enroll for Intellipaat Hadoop course online which is the most recognized name in Hadoop training and certification. Intellipaat Hadoop training includes all major components of Big Data and Hadoop like Apache Spark, MapReduce, HBase, HDFS, Pig, Sqoop, Flume, Oozie and more. The entire Intellipaat Big Data training in Singapore has been created by industry professionals. You will get 24/7 lifetime support, high-quality course material and videos and free upgrade to latest version of course material. Thus, it is clearly a one-time investment for a lifetime of benefits.
Intellipaat has a plethora of courses that will help you become a Data Analyst. The comprehensive Data Scientist courses, Big Data, Python, Machine Learning, Data Science Masters course, and others will help you to process, inspect, cleanse, transform, and create model data to gain useful information.
At Intellipaat, you can enroll in either the instructor-led online training or self-paced training. Apart from this, Intellipaat also offers corporate training for organizations to upskill their workforce. All trainers at Intellipaat have 12+ years of relevant industry experience, and they have been actively working as consultants in the same domain, which has made them subject matter experts. Go through the sample videos to check the quality of our trainers.
Intellipaat is offering the 24/7 query resolution, and you can raise a ticket with the dedicated support team at anytime. You can avail of the email support for all your queries. If your query does not get resolved through email, we can also arrange one-on-one sessions with our trainers.
You would be glad to know that you can contact Intellipaat support even after the completion of the training. We also do not put a limit on the number of tickets you can raise for query resolution and doubt clearance.
Intellipaat is offering you the most updated, relevant, and high-value real-world projects as part of the training program. This way, you can implement the learning that you have acquired in real-world industry setup. All training comes with multiple projects that thoroughly test your skills, learning, and practical knowledge, making you completely industry-ready.
You will work on highly exciting projects in the domains of high technology, ecommerce, marketing, sales, networking, banking, insurance, etc. After completing the projects successfully, your skills will be equal to 6 months of rigorous industry experience.
Intellipaat actively provides placement assistance to all learners who have successfully completed the training. For this, we are exclusively tied-up with over 80 top MNCs from around the world. This way, you can be placed in outstanding organizations such as Sony, Ericsson, TCS, Mu Sigma, Standard Chartered, Cognizant, and Cisco, among other equally great enterprises. We also help you with the job interview and résumé preparation as well.
You can definitely make the switch from self-paced training to online instructor-led training by simply paying the extra amount. You can join the very next batch, which will be duly notified to you.
Once you complete Intellipaat’s training program, working on real-world projects, quizzes, and assignments and scoring at least 60 percent marks in the qualifying exam, you will be awarded Intellipaat’s course completion certificate. This certificate is very well recognized in Intellipaat-affiliated organizations, including over 80 top MNCs from around the world and some of the Fortune 500companies.
Apparently, no. Our job assistance program is aimed at helping you land in your dream job. It offers a potential opportunity for you to explore various competitive openings in the corporate world and find a well-paid job, matching your profile. The final decision on hiring will always be based on your performance in the interview and the requirements of the recruiter.
Talk to us