Apache Spark Applications

Applications of Apache Spark

Since the time of its inception in 2009 and its conversion to open-source technology, Apache Spark has taken the Big Data world by storm. It has become one of the largest open-source communities that include over 200 contributors. The prime reason behind its success is its ability to process heavy data faster than ever before.
Spark is a widely used technology adopted by most industries. Let’s look at some of the prominent Apache Spark applications:

  • Machine Learning: Apache Spark is equipped with a scalable Machine Learning Library called MLlib that can perform advanced analytics such as clustering, classification, dimensionality reduction, etc. Some of the prominent analytics jobs like predictive analysis, customer segmentation, sentiment analysis, etc., make Spark an intelligent technology.
  • Fog computing: With the influx of big data concepts, IoT has acquired a prominent space for the invention of more advanced technologies. Based on the theory of connecting digital devices with the help of small sensors, this technology deals with a humongous amount of data emanating from numerous sources. Spark requires parallel processing, which is certainly not possible in Cloud Computing. Therefore, Fog computing, which decentralizes the data and storage, uses Spark Streaming as a solution to this problem.
  • Event detection: The feature of Spark Streaming allows organizations to keep track of rare and unusual behaviors for protecting the systems. Institutions, such as financial, security, and health organizations, use triggers to detect potential risks.
  • Interactive analysis: Among the most notable features of Apache Spark is its ability to support interactive analysis. Unlike MapReduce which supports batch processing, Apache Spark processes data faster, because of which it can process exploratory queries without sampling.

Big Data Hadoop Expert
Along with Apache Spark applications, now, check out some of the most popular companies that are utilizing various applications of Apache Spark:

  • Uber: Uber uses Kafka, Spark Streaming, and HDFS for building a continuous ETL pipeline.
  • Pinterest: One of the successful web and mobile application companies, Pinterest uses Spark Streaming in order to gain deep insight into customer engagement details.
  • Conviva: The pinnacle video company, Conviva deploys Spark for optimizing videos and handling live traffic.

Our Big Data Courses Duration and Fees

Program Name
Start Date
Fees
Cohort starts on 11th Jan 2025
₹22,743
Cohort starts on 1st Feb 2025
₹22,743
Cohort starts on 25th Jan 2025
₹22,743

About the Author

Technical Research Analyst - Big Data Engineering

Abhijit is a Technical Research Analyst specialising in Big Data and Azure Data Engineering. He has 4+ years of experience in the Big data domain and provides consultancy services to several Fortune 500 companies. His expertise includes breaking down highly technical concepts into easy-to-understand content.