Intellipaat Back

Explore Courses Blog Tutorials Interview Questions
+1 vote
2 views
in Machine Learning by (4.2k points)

I'm getting this error

'ValueError: Tensor Tensor("Placeholder:0", shape=(1, 1), dtype=int32) is not an element of this graph.'

The code is running perfectly fine without with tf.Graph(). as_default():. However I need to call M.sample(...) multiple times and each time the memory won't be free after session.close(). Probably there is a memory leak but not sure where is it.

I want to restore a pre-trained neural network, set it as default graph, and testing it multiple times (like 10000) over the default graph without making it larger each time.

The code is:

def SessionOpener(save):
    grph = tf.get_default_graph()
    sess = tf.Session(graph=grph)
    ckpt = tf.train.get_checkpoint_state(save)
    saver = tf.train.import_meta_graph('./predictor/save/model.ckpt.meta')
    if ckpt and ckpt.model_checkpoint_path:
        saver.restore(sess, ckpt.model_checkpoint_path)
        tf.global_variables_initializer().run(session=sess)
    return sess

def LoadPredictor(save):
    with open(os.path.join(save, 'config.pkl'), 'rb') as f:
        saved_args = cPickle.load(f)
    with open(os.path.join(save, 'words_vocab.pkl'), 'rb') as f:
        words, vocab = cPickle.load(f)
    model = Model(saved_args, True)
    return model, words, vocab

if __name__ == '__main__':
    Save = './save'
    M, W, V = LoadPredictor(Save)
    Sess = SessionOpener(Save)
    word = M.sample(Sess, W, V, 1, str(123), 2, 1, 4)
    Sess.close()

And the model is:

class Model():
    def __init__(self, args, infer=False):
        with tf.Graph().as_default():
            self.args = args
            if infer:
                args.batch_size = 1
                args.seq_length = 1

            if args.model == 'rnn':
                cell_fn = rnn.BasicRNNCell
            elif args.model == 'gru':
                cell_fn = rnn.GRUCell
            elif args.model == 'lstm':
                cell_fn = rnn.BasicLSTMCell
            else:
                raise Exception("model type not supported: {}".format(args.model))

            cells = []
            for _ in range(args.num_layers):
                cell = cell_fn(args.rnn_size)
                cells.append(cell)

            self.cell = cell = rnn.MultiRNNCell(cells)

            self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
            self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
            self.initial_state = cell.zero_state(args.batch_size, tf.float32)
            self.batch_pointer = tf.Variable(0, name="batch_pointer", trainable=False, dtype=tf.int32)
            self.inc_batch_pointer_op = tf.assign(self.batch_pointer, self.batch_pointer + 1)
            self.epoch_pointer = tf.Variable(0, name="epoch_pointer", trainable=False)
            self.batch_time = tf.Variable(0.0, name="batch_time", trainable=False)
            tf.summary.scalar("time_batch", self.batch_time)

            def variable_summaries(var):
            """Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
                with tf.name_scope('summaries'):
                    mean = tf.reduce_mean(var)
                    tf.summary.scalar('mean', mean)
                    tf.summary.scalar('max', tf.reduce_max(var))
                    tf.summary.scalar('min', tf.reduce_min(var))


            with tf.variable_scope('rnnlm'):
                softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
                variable_summaries(softmax_w)
                softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
                variable_summaries(softmax_b)
                with tf.device("/cpu:0"):
                    embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
                    inputs = tf.split(tf.nn.embedding_lookup(embedding, self.input_data), args.seq_length, 1)
                    inputs = [tf.squeeze(input_, [1]) for input_ in inputs]

            def loop(prev, _):
                prev = tf.matmul(prev, softmax_w) + softmax_b
                prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
                return tf.nn.embedding_lookup(embedding, prev_symbol)

            outputs, last_state = legacy_seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm')
            output = tf.reshape(tf.concat(outputs, 1), [-1, args.rnn_size])
            self.logits = tf.matmul(output, softmax_w) + softmax_b
            self.probs = tf.nn.softmax(self.logits)
            loss = legacy_seq2seq.sequence_loss_by_example([self.logits],
                    [tf.reshape(self.targets, [-1])],
                    [tf.ones([args.batch_size * args.seq_length])],
                    args.vocab_size)
            self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
            tf.summary.scalar("cost", self.cost)
            self.final_state = last_state
            self.lr = tf.Variable(0.0, trainable=False)
            tvars = tf.trainable_variables()
            grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                args.grad_clip)
            optimizer = tf.train.AdamOptimizer(self.lr)
            self.train_op = optimizer.apply_gradients(zip(grads, tvars))

    def sample(self, sess, words, vocab, num=200, prime='first all', sampling_type=1, pick=0, width=4):
        def weighted_pick(weights):
            t = np.cumsum(weights)
            s = np.sum(weights)
            return(int(np.searchsorted(t, np.random.rand(1)*s)))

        ret = ''
        if pick == 1:
            state = sess.run(self.cell.zero_state(1, tf.float32))

            if not len(prime) or prime == ' ':
                prime  = random.choice(list(vocab.keys()))
            for word in prime.split()[:-1]:
                x = np.zeros((1, 1))
                x[0, 0] = vocab.get(word,0)
                feed = {self.input_data: x, self.initial_state:state}
                [state] = sess.run([self.final_state], feed)

            ret = prime
            word = prime.split()[-1]
            for n in range(num):
                x = np.zeros((1, 1))
                x[0, 0] = vocab.get(word, 0)
                feed = {self.input_data: x, self.initial_state:state}
                [probs, state] = sess.run([self.probs, self.final_state], feed)
                p = probs[0]

                if sampling_type == 0:
                    sample = np.argmax(p)
                elif sampling_type == 2:
                    if word == '\n':
                        sample = weighted_pick(p)
                    else:
                        sample = np.argmax(p)
                else: # sampling_type == 1 default:
                    sample = weighted_pick(p)

                ret = words[sample]
        return ret

and the output is:

Traceback (most recent call last):
  File "/rcg/software/Linux/Ubuntu/16.04/amd64/TOOLS/TENSORFLOW/1.2.1-GPU-PY352/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 942, in _run
    allow_operation=False)
  File "/rcg/software/Linux/Ubuntu/16.04/amd64/TOOLS/TENSORFLOW/1.2.1-GPU-PY352/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2584, in as_graph_element
    return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
  File "/rcg/software/Linux/Ubuntu/16.04/amd64/TOOLS/TENSORFLOW/1.2.1-GPU-PY352/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2663, in _as_graph_element_locked
    raise ValueError("Tensor %s is not an element of this graph." % obj)
ValueError: Tensor Tensor("Placeholder:0", shape=(1, 1), dtype=int32) is not an element of this graph.

1 Answer

+1 vote
by (6.8k points)

When you create a Model, the session hasn't been restored yet. All placeholders, variables and ops that are defined in Model.__init__ are placed in a new graph, which makes itself a default graph inside with block. This is the key line:

with tf.Graph().as_default():

  ...

This means that this instance of tf.Graph() equals to tf.get_default_graph() instance inside with block, but not before or after it. From this moment on, there exist two different graphs.

When you later create a session and restore a graph into it, you can't access the previous instance of tf.Graph() in that session. Here's a short example:

with tf.Graph().as_default() as graph:

  var = tf.get_variable("var", shape=[3], initializer=tf.zeros_initializer)

# This works

with tf.Session(graph=graph) as sess:

  sess.run(tf.global_variables_initializer())

  print(sess.run(var))  # ok because `sess.graph == graph`

# This fails

saver = tf.train.import_meta_graph('/tmp/model.ckpt.meta')

with tf.Session() as sess:

  saver.restore(sess, "/tmp/model.ckpt")

  print(sess.run(var))   # var is from `graph`, not `sess.graph`!

The best way to deal with this is give names to all nodes, e.g. 'input', 'target', etc, save the model and then look up the nodes in the restored graph by name, something like this:

saver = tf.train.import_meta_graph('/tmp/model.ckpt.meta')

with tf.Session() as sess:

   saver.restore(sess, "/tmp/model.ckpt")    

   input_data = sess.graph.get_tensor_by_name('input')

   target = sess.graph.get_tensor_by_name('target')

Accessing the Machine Learning Certification would give you a broader knowledge of Tensorflow Tutorial.

31k questions

32.8k answers

501 comments

693 users

Browse Categories

...