Updated on 10th Jun, 22 2988 Views

In today’s world of huge amounts of data being generated at breakneck speeds there are a lot of terms that come up during the course of discussion in corporate boardrooms on a daily basis. Two of the very common terms that are being increasingly used are “Data Mining” and “Statistics”. This blog will help you understand each of these terms, bring out the difference in the two and make you understand where exactly each one is used in real world industry applications.

Data mining and statistics have a lot of overlap but then they have a lot of distinct features as well. The process of data mining includes parsing through huge volumes of data and coming up with hidden patterns, relationships and such other aspects that can prove to have huge implications for businesses.

Prepare and crack your Machine Learning interview with these Statistics Interview Questions.

Statistics is more about finding the various patterns in data using tried and tested mathematical models, formulae and other aspects. Data mining is more about using various trial and error methods in the hope of finding something more useful.

### Watch this Video on Data Mining Tutorial for Beginners

Data mining is the domain that is involved with making predictions with heightened accuracy. Statistics is about analyzing, interpreting and presenting the numerical facts and data in order to derive valuable insights out of it. Data mining actually grew out of the database technology and it has now become a multi-disciplinary field that encompasses a lot of the subjects in machine learning, statistics and other processes to extract hidden information and patterns from raw data and convert it into nuggets of information.

The process of data mining is through the use of clustering, classification, regression and other aspects. When it comes to data mining some of the most important concepts include the process of data cleansing, data inspection, data preparation and more.

Check out Data Mining Applications and top trends in the industry which might have a future scope!

Today more and more data mining techniques use the process of artificial intelligence in order to gain an upper edge when compared to the traditional means of data mining. At the end both data mining and statistics try to do the same thing which is to find some mapping between the input and the output in this world. Statistics uses the method of stochastic approach in order to model the world. Once there is a proper model then you can extract more samples from the model.

The field of Data Mining gives little importance to the process of how you come to get some result. As the main goal of the data mining process is to come up with enough inferences or results that can justify a certain decision in the real world.

Data mining is more about digging data, discovering patterns and coming up with theories to get to inferences. But the methods of statistical analysis can be applied only on data that is cleansed. Statistics is more about confirmation and applying the various theories. The size of data is large in data mining whereas for statistics it works on small data sets. Data mining is more about an exploratory approach wherein the data is dug out first, the patterns are discovered or hidden patterns and then the theories are made. Whereas statistics is the domain of providing the theory first and then testing it using the various statistical tools. Data mining uses a lot of heuristic thinking whereas the methods of statistics do not use a lot of heuristic thinking.

Data mining is the process that can work with both numeric and non-numeric data but statistics can work only on the numeric data. Estimation, classification, neural networks, clustering, association, and visualization are used in data mining. Descriptive analytics and inferential analytics are the most important statistical methods used.

### Watch this Video on Statistics for Data Science Course

Check the Data Science course online training and certification for a career in Data Mining or Statistics!

Course Schedule

Name Date
Data Science Course 2022-12-03 2022-12-04
(Sat-Sun) Weekend batch
View Details
Data Science Course 2022-12-10 2022-12-11
(Sat-Sun) Weekend batch
View Details
Data Science Course 2022-12-17 2022-12-18
(Sat-Sun) Weekend batch
View Details