Flat 10% & upto 50% off + 10% Cashback + Free additional Courses. Hurry up

Spark Tutorial – Learn from experts

In this free Apache Spark Tutorial you will be introduced to Spark analytics, Spark streaming, RDD, Spark on cluster, Spark shell and actions. You will learn about Spark practical use cases. Apache Spark continues to gain momentum in today’s big data analytics landscape. Although a relatively newer entry to the realm, Apache Spark has earned immense popularity among enterprises and data Analysts within a short period. Apache Spark is one of the most active open source big data projects. The reason behind is its versatility and diversity of use.

Some of the key features that make Spark a strong big data engine are:

  • Equipped with MLlib library for machine learning algorithms
  • Good for Java and Scala developers as Spark imitates Scala’s collection API and functional style
  • Single library can perform SQL, graph analytics and streaming.

Learn Spark in 15 hrs from experts

Spark is admired for many reasons by developers and analysts to quickly query, analyze and transform data at scale. In simple words, you can call Spark a competent alternative to Hadoop, with its characteristics, strengths and limitations. Spark runs in-memory to process data with speed and sophistication than the other complement approaches like Hadoop MapReduce. It can handle several terabytes of data at one time and perform efficient processing.

Spark versus Hadoop MapReduce

Despite having the similar functionality, there is much difference between these two technologies. Let’s have a quick look into this comparative analysis:

Criteria Spark Hadoop MapReduce
Processing Location In-memory Persists on disk after map and reduce functions
Ease of use Easy as based on Scala Difficult as based on Java
Speed Up to 100 times faster than Hadoop MapReduce Slower
Latency Lower Higher
Computation Iterative computation possible single computation possible
Task Scheduling Schedules tasks itself Requires external schedulers.

Spark Tutorial Video

One of the excellent benefits of using Spark is that it is often used in Hadoop’s data storage model, i.e. HDFS and can well integrate with other big data frameworks like HBase, MongoDB, Cassandra. It is one of the best big data choices to learn and apply machine learning algorithms in real-time.  It has the ability to run repeated queries on large databases and potentially deal with them.

Knowing the extensively excellent future growth and rapid adoption of Apache Spark in today’s business world, we have designed this Spark tutorial to educate the mass programmers on interactive and expeditious framework. The tutorial aims at training you on beginner concepts of using Spark as well as gain insights into its advanced modules. For all those who are seeing an expert Spark tutor, this learning package is the delightful and knowledgeable end to your search.

It includes detailed elucidation of Spark and Hadoop Distributed File System. The major topics include Spark Components, Common Spark Algorithms-Iterative Algorithms, Graph Analysis, Machine Learning, Running Spark on a Cluster. Further, you will be able to type in algorithms by yourself by learning to write Spark Applications using Python, Java, Scala, RDD and its operations. Since Spark has the ability to run on diverse platforms using various languages, it is an important phase to gain insights into developing application with various mentioned programming languages.

Become Spark Certified in 15 hrs.


This learning package also covers Spark, Hadoop, and the Enterprise Data Centre, Common Spark Algorithms and Spark Streaming, which is yet another important feature of Spark. Most application developers are frequently using this data streaming to keep a check on fraudulent financial transactions. If you find this tutorial helpful, you can browse through our multiple combo training courses of Spark, Storm, Scala and Spark with Python – which can help you grow technically and managerially.

Learn more about Most Valuable Data Science Skills Of 2017 in this insightful blog now!

Recommended Audience

  • Big Data Analysts and Architects
  • Software Professionals, ETL Developers and Data Engineers
  • Data Scientists and Analytics Professionals
  • Beginner and advanced-level programmers in Java, C++, Python
  • Graduates aiming to learn latest and efficient programming language to process Big data in a faster and easier manner.


"4 Responses on Spark Tutorial"

  1. Neha says:

    A big thanks to Intellipaat- as a beginner, I could not have understood it better than this tutorial.

  2. Aaron says:

    The material of the tutorial is easy to follow and very informative. It was great, I learned a lot in a clear concise way. Thanks..

  3. Darshan says:

    I really enjoyed this tutorial, it gave me lots of background to understand the basics of apache technologies.This is a wonderful startup tutorial.

  4. Monu says:

    Wonderful tutorial on Apache Spark. Really helpful!

Leave a Message

100% Secure Payments. All major credit & debit cards accepted Or Pay by Paypal.

Sales Offer

Sign Up or Login to view the Free Spark Tutorial.