**RÂ Data Structures User Handbook**

Data Structures are used to organize and store the data on the computer. R programming is a language that supports particular types of Data Structures. Most of the industries use Data Structures and write them in particular programming languages such as R.

**Wish to get certified in R! Learn R from top R experts and excel in your career with Intellipaat’s R Programming certification!**

Data Structures in R cheat sheet will help you with the basic concepts and the commands one must know to get started with it. It is helpful for the beginners as well as experienced people as it provides a quick overview of the important concepts required.

Further, if you want to learn Data Structures in R, you can refer to the R tutorial.

*You can also download the printable PDF of this Data Structures in R cheat sheet*

*You can also download the printable PDF of this Data Structures in R cheat sheet*

**Data Structure:** It is a way of organizing data that contains the items stored and their relationship to each other

**R Programming:** It is a programming language that is mainly used by Data Scientists, it is preferred by the people who are good at Statistics and mathematics. In this language functions and codes are stored in a package inside the library

**Enroll yourself in R Programming Training and give a head-start to your career in R Programming!**

**Types of R objects:**

**Vector:**The basic data structure in R is Vector, it comes in two parts- Atomic vector and
- List
- A basic way of using vectors is by c () function. E.g.: C (1,2,3)

**Matrix:**A matrix is a collection of numbers arranged into an affixed number of rows and columns. By using a matrix function we can reproduce a memory representation of the matrix in R**Array:**In R it is called a multi-dimensional data structure. Here, the data is stored in the form of matrices. Array in R is the data object which can store data in more than two dimensions**List:**These are the objects which contain elements of different types like string, numbers, vectors and another list inside it. It can be created using the list () function**Data Frames:**It refers to the tabular form of data, representing the cases (rows), each of which consists of the number of observations or measurements (columns). It is used for storing data tables, it is a list of vectors of equal length

**Go through this R Programming training in Singapore to get a clear understanding of Artificial Intelligence!**

**Data tables:**

It extends and enhances the functionality of Data Frames

**Types of Data Structures in R**

**Syntax for the use of R data structures:**

**Vector:**

- To create a vector:

v1 < - c (1,2,3)

- Get length

length(v1)

- Check if all or any is true

all(v1); any(v1)

- Integer indexing

v1[1:3]; v1[c (1<6)]

- Boolean indexing

v1[is.na(v1)] < - 0

- Naming:

c(first = â€˜aâ€™, ..) or names(v1) < -c(â€˜firstâ€™, ..)

**List:**

- To create the list:

list1 < - list (first = â€˜aâ€™, â€¦)

- Create empty list

vector (mode = â€˜listâ€™ , Length = 3)

- Get element:

list1[[1]] or list1[[â€˜Firstâ€™]]

- Append using numeric index

list1 [[6]] < - 2

**Learn end-to-end R Programming concepts through the R Programming training in Hyderabad to take your career to a whole new level!**

**Data frame:**

- To create data frame:

df1 < - data.frame (col1=v1, col2=v2, v3)

- Dimension:

nrow(df1); ncol(df1); dim(df1)

- Get/set column names

rownames(df1) rownames(df1) < - c(â€¦)

- Preview

head(df1,Â n=10) ; tail(â€¦)

- Get data types:

class(df1) # is data.frame

- Index by columns

df1[â€˜col1â€™] or df1[1] df1[ c(â€˜col1â€™, â€˜col3â€™)] or df1[ c(1,3)]

- Index by rows or columns

df1[ c(1,3), 2:3] # returns data from rows 1,3 and columns 2,3

- To create data table from data.frame:

data.table(df1)

- Index by columns:

dt1[, â€˜col1â€™ , with= FALSE] or dt1[, list (col1)]

- Show info for each data.table in memory:

tables()

- Show keys in data.table:

key(dt1)

- Create index for col1 and reorder data according to col1:

setkey(dt1,col1)

- Use key to select data:

dt1[c(â€˜col1value1â€™, â€˜col1value2â€™,]

- Multiple key select:

dt1[J(â€˜1â€™, c(â€˜2â€™, â€˜3â€™)), ]

- Aggregation:

dt1[, list(col1=mean(col1)), by = col2 ] dt1[, list(col1=mean(col1), col2sum= sum(col2)), by = list(col3, col4) ]

**Get familiar with the top R Interview Questions to get a head start in your career!**

**Matrix:**

- To create Matrix:

matrix1 < - matrix(1:10, nrow = 5 ) # fills rows 1 to 5, column 1 with 1:5, and column 2 with 6:10

- Matrix multiplication:

matrix1 %*% t (matrix2)

# where t() is transpose

**Download a Printable PDF of this Cheat Sheet**

With this, we come to an end of Data Structures in R Cheatsheet. To get in-depth knowledge, check out our R Programming Course that comes with 24*7 support to guide you throughout your learning period. Intellipaat Data Analytics course with R Programming will help you be a masterâ€™s in data Manipulation with R programming, Data visualization, advance analytics topics like regressions, data mining using RStudio. You will work on real-life projects and assignments to master data analytics.

**Have a look at this awesome blog on Why should you learn R and clear all your doubts related to it!**

great