Flat 10% & upto 40% off + 10% Cashback + Free additional Courses. Hurry up

Machine Learning Algorithms

It is a process or collection of rules or set to complete a task. It is one of the primary concept in, or building blocks of, computer science: the basis of the design of elegant and efficient code, data processing and preparation, and software engineering.

In data science there are mainly three algorithms are used:

  1. Data preparation, munging, and process algorithms
  1. Optimization algorithms for parameter estimation which includes Stochastic Gradient Descent, Least Squares, Newton’s Method
  1. Machine learning algorithms

Read these Top Trending Data Science Interview Q’s  blog now that helps you grab high-paying jobs!

Machine Learning Algorithms

Machine learning is used to predict, categorize, classify, finding polarity, etc from the given datasets and concerned with minimizing the error.

It uses training data for artificial intelligence.

Since there are many algorithms like SVM, Bayes algorithm, logistic regression, etc. which will use training data to match with input data and then it will provide conclusion with maximum accuracy.

machine learning algorithmsMachine learning is categorized into

  •             Supervised learning
  • It is used for structured dataset. It analyzes the training data and generates function which will be used for other datasets.
    • Unsupervised learning

    It is used for raw datasets. Its main task is to convert raw data to structured data.In today’s world there is a huge amount of raw data in ever field. Even the computer generates log files which are in the form of raw data. Therefore it’s the most important part of machine learning.

    We will be using three algorithms in this course

    • Linear Regression

    It is the most well known and popular algorithm in machine learning and statistics. This model will assume a linear relationship between the input and the output variable. It is represented in the form of linear equation which has a set of inputs and a predictive output. Then it will estimate the values of coefficient used in the representation.


linear regression


  • k-Nearest Neighbors (k-NN)

This algorithm is used for classification problem and statistical problem as well.

Its model is to store the complete dataset. By using this algorithm, prediction is done by searching the entire training data for k instances. We can use Euclidean distance formula to determine similar input from k training data. Prediction depends on mean and median while solving for regression problem. This algorithm mainly used for classification problem.

Output will be calculated from a class that has highest frequency, when solving for classification.


  • k-means

It is an unsupervised technique which is used for raw datasets. It is used to classify objects based on attributes into k numbers of groups. Its main aim is to partition n items into k clusters. The main idea is to define k centers, for each cluster. This centered k should be placed in such a way that most accurate result will be obtained. This centered k plays an important role to get the accurate result.

Learn more about Data Science  in this insightful blog now!

"0 Responses on Machine Learning Algorithms"

100% Secure Payments. All major credit & debit cards accepted Or Pay by Paypal.

Sales Offer


Sign Up or Login to view the Free Machine Learning Algorithms.